
UnForm Version 5

1

UnForm User Guide

Version 5.0

UnForm is published under license by:
Synergetic Data Systems, Inc.

2195 Talon Drive
Latrobe, CA 95682

USA

Phone: (530)-672-9970
Fax: (530)-672-9975

Email: sdsi@synergetic-data.com
Web page: http://synergetic-data.com

UnForm is Copyright ©1994-2002 by Allen D. Miglore. All rights reserved.
UnForm is a trademark of Synergetic Data Systems, Inc.

Other product names used herein may be trademarks or registered trademarks of their respective owners.

UnForm Version 5

2

UnForm Page Enhancement Software
License Agreement

NOTICE: OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THE FOLLOWING TERMS AND CONDITIONS. PLEASE READ THEM. IF
YOU DO NOT AGREE WITH THEM, RETURN THE PACKAGE UNOPENED, AND RETURN OR DESTROY ANY COPIES OF THE PROGRAM IN YOUR
POSSESSION. THE DEALER FROM WHOM YOU PURCHASED THE SOFTWARE WILL REFUND YOUR PURCHASE PRICE.

"Program", as used herein, refers to both this documentation and the software programs described by this documentation.
"Developer", as used herein, refers to Allen D. Miglore. “Publisher” as used herein refers to Synergetic Data Systems Inc.

LICENSE
You may use the Program on a single machine, and you may copy the Program into any machine-readable format for backup purposes only. If you transfer the Program to another
machine, you agree to destroy the Program, together with all copies, in whole or in part, on the original machine.

You may not copy, modify, or transfer the Program, in whole or in part, except as expressly provided herein. You may not sublicense, assign, or otherwise transfer the Program to
any third party except by the express written consent of the Developer or Publisher.

TERM
The license is effective until terminated. You may terminate at any time by destroying the Program together with all copies of the Program in your possession. It will also terminate
automatically upon failure to comply with any of the terms of this agreement. You agree upon such termination to destroy the Program together with all copies in your possession in
any form.

CONFIDENTIALITY OF THE PROGRAM
You understand that the Program is proprietary to the Developer, and agree to maintain the confidentiality of the Program. You agree that neither you, nor any person or entity acting
on your behalf, will copy or otherwise transfer the Program, in whole or in part, in any form (including printed source code), to any third party. You agree to retain the Developer's
copyright notices, in all forms, throughout the Program. You agree not to de-encrypt or de-compile the Program.

LIMITATION OF LIABILITY
The Program is provided "AS IS" without warranty of any kind, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose. The entire
risk as to the quality and performance of the Program is with you.

In no event will the Developer or Publisher be liable to you for any damages, including any lost profits or other incidental or consequential damages arising out of the use or inability
to use the Program, even if advised of the possibility of such damages.

SUPPORT
Support for the Program should be obtained from the Dealer from whom it was purchased. Support pricing and terms are established by the Dealer, not the Developer or Publisher.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS.
YOU FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND THE DEVELOPER
AND PUBLISHER AND IT SUPERSEDES ANY PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN YOU AND
THE DEVELOPER RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

UnForm Version 5

3

TABLE OF CONTENTS
TABLE OF CONTENTS ..3

INTRODUCTION ...6

INSTALLATION...7

CONCEPTS, PRIMER, AND TIPS ...10

INTEGRATING UNFORM WITH BBX4 OR PRO/5 ..15

INTEGRATING UNFORM WITH PROVIDEX ...19

INTEGRATING UNFORM WITH NON-BUSINESS BASIC APPLICATIONS ...21

FILES USED BY UNFORM...23

LICENSING...25

UNFORM ON A WINDOWS NETWORK...28

USER COUNTS ...31

UNFORM OPTIONS ..32

VERSION 5 FEATURES ..39

RULE FILES..41
ACROSS ...42
ATTACH ..43
BARCODE (PCL,PDF) ..44
BARCODE (ZEBRA)...47
BIN ...50
BOJ, BOP, EOJ, EOP ...51
BOLD, ITALIC, LIGHT, UNDERLINE ..52
CBOLD, CITALIC, CLIGHT, CUNDERLINE..52
BOX, CBOX...53
COLS ..56
COMPRESS..57
CONST ...58
COPIES / PCOPIES..59
CPI ..60
CROSSHAIR ..61
DETECT ...62
DOWN..63
DPI..64
DUMP...65
DUPLEX...66
EMAIL..67
ERASE, CERASE...68
FIXEDFONT ..69

UnForm Version 5

4

FONT, CFONT...70
GS ...73
HLINE ..74
IF COPY … END IF...75
IF DRIVER … END IF ..76
IMAGE ...77
ITALIC ...79
LANDSCAPE, RLANDSCAPE ...80
LIGHT ..81
LPI ..82
MACRO..83
MACROS..84
MARGIN ..85
MERGE ..86
MICR ..87
MOVE, CMOVE ..88
NOTEXT ..90
OUTLINE ...91
OUTPUT...92
PAGE..93
PAPER..94
PORTRAIT, RPORTRAIT...95
PRECOPY, PREDEVICE, PREJOB, PREPAGE...96
POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE...96
ROWS...101
SHADE, CSHADE ...102
SHIFT ...104
SYMSET...105
TEXT ..106
TITLE ...110
TRAY..111
UNDERLINE..112
UNITS...113
VLINE ..114
VSHIFT ..115

WORKING WITH MACROS..116

REGULAR EXPRESSIONS...118

SAMPLE RULE SETS..119
INVOICE - INVOICE FOR PRE-PRINTED FORM ...120
STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB...127
AGING REPORT - ENHANCED AGING REPORT ..133
LABELS – TEXT LABELS TO LASER LABELS..139
132X4 – MULTI-UP, SCALED REPORTING..141
ZEBRA LABEL – ZEBRA LABEL PRINTER EXAMPLE...142
PDF OUTLINE SAMPLE ..144

PROGRAMMING FUNDAMENTALS ..146

EMAIL INTEGRATION ..157

NESTED RULESET EXECUTION ...164

UnForm Version 5

5

HTML OUTPUT ...165
CREATING HTML ..166
HTML CONFIGURATION..168
HTML OUTPUT TEMPLATES ..170
HTML RULE SETS..173
BORDER ..174
COLDEF...175
COLWIDTH ...179
FRAME...180
HDRON, HDROFF, HDRTD ...181
LOAD ...182
MULTIPAGE ...183
NULLROW...184
OUTPUT...185
OTHEROPT..186
PAGESEP ...187
PREJOB, PREPAGE, POSTJOB, POSTPAGE ...188
ROWDEF..190
TITLE ...193
TOC ..194
WIDTH ...195
SAMPLE HTML RULE SET ...196
AGING REPORT SAMPLE...196

INDEX ..200

UnForm Version 5

6

INTRODUCTION

UnForm is a software utility designed to work as a filter between an application and an output device
like a LaserJet printer or a program like a fax product. Most applications can be simply configured to
print through UnForm, which in turn processes the output from the application, determines if custom
processing is necessary, and then applies any enhancements before it is output.

For example, if a UNIX program sends output to the spooler like this:

 cat file-name | lp -dlaser -s 2>/dev/null

then the output can be changed to use UnForm:

 cat file-name | unform50 -f acct.rul | lp -dlaser -s 2>/dev/null

UnForm can also work in MS-DOS or Windows environments, as long as the application can produce a
file and then execute UnForm to process the file and produce output. In BBXPROGRESSION/4 or
Visual PRO/5 environments, this is easily accomplished with some simple changes to the BBx
configuration file.

UnForm is unique in its ability to analyze report output to determine what, if any, customization to
apply. For most reports used by an application, UnForm will perform no manipulation of the text.
When a report is detected that requires enhancements, however, UnForm can add line drawing, shading,
attributes, font control, and text to the form. UnForm can also handle the processing of multiple copies,
multiple output devices, attachments, overlays, and graphic images, and includes support for the
complete Business Basic programming environment to add true programmed intelligence to any form.

The enhanced output can be used to simulate pre-printed forms, or can change the look of plain-paper
forms, for which headings and dashed lines are printed by the application, from crude to professional.
UnForm can also be used to enhance reports, such as financial statements or aging reports, raising them
from mundane to board room quality.

UnForm can produce enhancements on any printer or device that offers the HP PCL5 printer language.
This includes all HP LaserJet and compatible printers beginning with the HP LaserJet III, many UNIX
faxing software packages, and other products. Using the PDF driver, all printers available to the PDF
reader can be used.

UnForm Version 5

7

INSTALLATION

UNIX CD installation instructions:

1. Login as root.

2. Mount the CD as a file system that supports lowercase file names. If you are unsure how to do

this, check your man pages: man mount. The following table illustrates sample mount
commands for various operating systems, assuming the mount directory, /mnt, is available, and
standard CD device names. You may need to adjust these commands according to your
configuration.

SCO UNIX OS5 mount –o lower /dev/cd0 /mnt
SCO UNIX mount –r –f HS,lower /dev/cd0 /mnt
UNIXware mount –F cdfs –r /dev/cdrom/cdrom1 /mnt
AIX mount –vcdrfs –r /dev/cd0 /mnt
Sun Solaris mount –rt hsfs /dev/sr0 /mnt
HP/UX mount –r –F cdfs –o cdcase /dev/dsk/c1d0s2 /mnt

3. Change to the UnForm50 UNIX directory in the mount directory: cd /mnt/unform50/unix

4. Run the install script: ./install.sh, or if you do not have execute permission to the file,

sh install.sh. Follow the prompts to select a directory for UnForm, and choose if you will be
supplying your own run-time BBx4, PRO5, or PVX engine, or installing a bundled version that
includes a pro5 engine. If you install a bundled version, you will need to select the version that is
appropriate for your operating system.

5. UnForm will then be installed by copying the UnForm files to the selected directory, and

executing the set up script ./ufsetup in the UnForm directory. Once UnForm has been installed
from the CD, ./ufsetup can be executed at any time from the UnForm directory. See step 4 in the
next section for more information about ufsetup.

6. Use the unform50 –v command to ensure UnForm is installed and set up correctly. The output

from this command will display the serial number used and state that this is a demo version.

7. See the Licensing section for activation instructions.

UnForm Version 5

8

UNIX download installation instructions

1. Login as root.

2. Create a directory to hold the UnForm files, and change to that directory.

 Example: umask 0
 mkdir /usr/unform
 cd /usr/unform

3. Uncompress and extract UnForm from the download file:

 uncompress uf50_xxx_tar.Z
 tar xvf uf50_xxx_tar

4. Execute the UnForm set up script, which will normally ask you where BBXPROGRESSION/4 or

PRO/5 or ProvideX executable is located on your system. UnForm uses BBXPROGRESSION/4
or PRO/5 as a run-time environment. If you have a version of UnForm that includes a run-time,
then this question won't be asked.

 ./ufsetup

 If you see the question "What directory contains BBx4, or PRO5, or PVX?", then you must

answer with the correct directory, or the installation will not complete, and you will have to re-
run this step again when you know the correct directory information.

 ufsetup will then prompt for a default rule file, normally unform.rul. This will be used if the

command line doesn’t contain a “-f” argument.

 Once a valid directory has been entered, the ufsetup script will create a script called

"/usr/bin/unform50". That is the script that is used as a pipe, and as it is in the /usr/bin/ directory,
all tasks should be able to access it by using the command "unform50".

5. Use unform50 –v command to ensure UnForm is installed and set up correctly. The output from

this command will display the serial number used and state that this is a demo version.

6. See the Licensing section for activation instructions.

UnForm Version 5

9

Windows 95/98/NT Installation Instructions:

1. From the CD, use explorer to locate the D:\unform50\win directory (or D:\unform50\winbun for

a bundled install that includes a run-time), and double-click the setup.exe program. If you
downloaded UnForm from the Internet, simply execute the downloaded executable. Follow the
on-screen prompts from the installer to install UnForm to your system. Note that the unform.exe
program and the associated unform.ini file are installed both in the Windows directory and in the
UnForm directory.

2. Click the Run ufsetup icon. This will conditionally rename certain files and prompt for where

your run-time Business Basic is located. The full path to the executable must be given. This
value will be stored in unform.ini, in the Windows system directory. It will also prompt for a
default rule file, to be used in case the UnForm command line doesn’t contain a “-f” argument.

3. Use the UnForm Information icon to ensure UnForm is installed and set up correctly. The

output from this command will display the serial number used and state that this is a demo
version.

4. If you plan to use Windows print driver output, you will need to install Adobe Acrobat. If you

already have Acrobat installed, you can skip this step. Otherwise, you should install Adobe
Acrobat from the D:\acrobat directory. You can also download the Acrobat Reader from
http://adobe.com or http://unform.com. UnForm’s default configuration for the Acrobat Reader
location is C:\Program Files\Adobe\Acrobat 4.0\Reader, the default installation directory for
Acrobat 4.0. If Acrobat is installed elsewhere, then the first UnForm execution to a Windows
print driver will prompt for the correct location, or you can edit the reader.ini file directly in the
UnForm directory.

5. See the Licensing section for activation instructions.

UnForm Version 5

10

CONCEPTS, PRIMER, AND TIPS

UnForm is a very powerful tool, with dozens of commands and features. It can be difficult to grasp the
basics from such a large base, but the basics are really very simple. Once UnForm is installed by an
administrator, the only skills required to develop typical business forms are an ability to edit text files on
your system, and an ability to execute UnForm as needed to test your changes.

Here are some basic concepts that you should understand before proceeding:

• UnForm processes text input and produces formatted output. The input can come from a file or, on

UNIX, can come from UnForm’s standard input. The output can go to a file or a device, or on UNIX
can go to UnForm’s standard output.

• UnForm uses a rule file to define all the form and print jobs it might process. In that rule file are one
or more rule sets, each of which represents one form or print job. Rule files and the rule sets they
contain are simply text files with command lines, which you can edit with any text editor. The rule
file should be stored in the UnForm directory, and specified with the “-f rulefile” command line
argument. If you don’t specify the rule file on the command line, then the default rule file named at
installation is used.

• Unless the “-r ruleset” command line option is used, UnForm reads the first page of input and
compares that first page with all the detect statements found in each rule set. These statements
instruct UnForm to look for text or patterns at specified locations or lines (or anywhere on the page).
If all the detect statements for a given rule set match the contents of the first page, then UnForm
selects that rule set and begins to produce output. If a match is not found, then the next rule set is
tested, and so on until all the rule sets have been tested. If no match is found, then UnForm will pass
the job through without any changes or enhancements.

• Each job has its own geometry, that is, the basic columns and rows to which UnForm scales
everything. If you specify cols 85, then UnForm will scale each character and all the enhancement
positions and sizes to 1/85th of the printed space between the margins. In a sense, the job wraps
enhancements around the text input as it is sent to the output.

• The commands in the rule set determine what enhancements are applied. These can be text
additions, font changes, boxes, shade regions, barcodes, images, and more. Each change is
controlled by a command line in the rule set, such as box 5.5,2,20,4.

Some commands don’t add output, but instead modify the text input to UnForm. The text will
normally print in the Courier font, scaled to the number of columns you specify. You can change the
attributes of that text in any rectangular region with font, bold, italic, and underline commands.
Your can also manipulate that text with the move and erase commands.

Some commands control the printer. For example, the tray command can select the input tray on a

UnForm Version 5

11

laser printer.

• You can have UnForm generate multiple copies of each page of input. Each copy can have unique
characteristics by using if copy n blocks. This is a simple structure that just starts with a line with
the phrase “if copy n”, where n is the copy number, followed by any number of lines of enhancement
commands, followed by a line with the phrase end if.

Basic Ruleset Creation Steps

• Obtain sample output from your application for the form you want to enhance. This output can be

printed to a text file, or you can simply use two printers defined with UnForm, one with the crosshair
option (-x), the other with normal output. If you are working on a Windows system or have network
access from a Windows system to the server where UnForm operates, you can use the pdf driver and
an Acrobat Reader to save paper while developing the design.

• Print your sample through UnForm with the crosshair option turned on. This will provide you with a
grid of text positions printed by your application. If you have a file printed by your application, the
command line for a grid would look like this: unform50 –x –i input-file –o output-device or
unform50 -x –i input-file | lp -dxxx .

• Since you will be printing this sample many times, you may wish to create a script or batch file to
automate the command line, which will be something like: unform50 –i input-file –f rule-file –o
output-device or unform50 –i input-file –f rule-file | lp -dxxx.

• Looking at the text of the input file, determine what makes this job unique. Sometimes there is a
title, such as “PURCHASE ORDER”, printed at a specific position. That may be enough to
determine the uniqueness of the document so just add detect column, row, “PURCHASE ORDER”.
You might need to find multiple patterns by using more than one detect statement. Patterns are
specified by starting the detect string argument with a ~ character. The balance of the string is a
regular expression. Common syntax elements for regular expressions include “.” to match any
character, [0-9] to match any digit, [A-Z] to match any capital letter, * to match any number of
repetitions of the prior match character. A more complete description of regular expressions is in the
Regular Expressions chapter.

To try out your detect statement(s), try adding just those statements plus a single text command, then
print the job. If your job prints with that text in addition to the text from your application, then your
detect statements are working. This is what the rule set will start to look like:

[purchase_order]
detect 40,2,”PURCHASE ORDER”
text 1,1,”Test Text”

Note that it is possible to execute a rule set without detect statements, by adding “-r ruleset” to the

UnForm Version 5

12

command line.

• The rest of the form design is simply a matter of adding commands for text, boxes, and shade
regions. It is usually best to work consistently from top to bottom, left to right in the different
sections of the form. Use comments (lines starting with #) liberally; they make the rule set easier to
follow when you come back later to make a change.

A good place to get an idea of what complete rule sets look like is the sample forms provided with
UnForm, thoroughly documented in Sample Rule Sets chapter. In addition to simple form designs, the
samples show techniques with complex designs, such as jobs with multiple formats of input, and jobs
that have embedded programming capabilities. The sample rule set is called sample.rul, and is found in
the UnForm directory.

Tips and Techniques

• Always start with a cross-hair pattern, so the basic text provided by the application, and its exact

placement, can be seen. As the cross-hair mode prints just the first page, use short versions of the
reports or forms. There are several ways to create a cross-hair version of a report:

Print the report to a file, then process that file with UnForm’s command line, such as unform -i
filename -o output-device -x.

Add a printer configured with the “-x” option, and print to that printer.

Set the environment variable “UFC” to y before starting your application. All UnForm printing will
then generate a cross-hair pattern.

If your report doesn’t contain form feed characters at the end of the page, then you should print just
one page worth of data. Otherwise, UnForm will assume the page is made up of as many lines as are
printed, up to 255 lines.

• Use detect statements to identify each form. UnForm is designed to process all your reports and just
enhance those it can identify; all others are passed through unchanged. This is easier to set up than
forcing a given printer device to be named for every form or report, as is required of most form
packages. If user counts are a problem, then it may help to set up a single printer as the UnForm
printer, and print selected reports through that.

• Specify the columns and rows for the form or report using the cols and rows commands. If this isn’t
done, then UnForm will assume 80 columns by 66 rows. An exception to this assumption is that if a
page keyword is used, then the rows will be taken to be that value unless a rows command is also
present.

UnForm Version 5

13

• Remove unwanted text with the erase command, or move it with the move command. In
programming code, such as in the prepage or precopy routines, you can modify the text$[] array
directly or via the set() function.

• Apply attributes to the text with the bold, italic, light, or underline commands. These apply to the
text generated by the application (not to text you add with the text keyword).

• To modify the font of text from the application, use the font command. All text printed by the
application will print in Courier unless changed with the font command. When changing to a
proportional font, be sure to make the changes to specific logical regions, such as a column of prices.
If you change the font for the entire page, then columns will not align properly.

• Text, such as headings or messages, can be added with the text command. Text can be literals
enclosed in quotes, named values from a substitution file if prefixed with “@”, environment
variables prefixed by $, or an expression enclosed in { } characters. Text can be rendered at any size
and in any font supported by the printer or device. Remember that fixed pitch fonts, such as Courier,
are sized in characters per inch, while proportional fonts are sized in points. The larger the cpi, the
smaller the font. The larger the point size, the larger the font.

• Shading and box drawing can be added with the shade and box commands. Reverse shading is
accomplished by shading a region with 100% (black) shading, and using a font or text command to
modify the text to shading of 0% gray (white). Simply using a row or column value of 1 will draw
lines. To draw a box and shade the interior, use the shade option of the box keyword.

• Logos and other images are added with the image command. With this command, UnForm looks
specifically for PCL raster images (or PDF images if the pdf driver is used) in the file. To produce a
PCL raster image, use a Windows workstation to print your picture to a file, using a HP LaserJet III
or higher print driver. PDF images can be produced using Adobe Acrobat Distiller or Image
Alchemy.

• To add overlays or attachments, use the attach command. This command does not search only for
image data. It does, however, search for and remove initialization and form-feed codes.
Attachments should be treated as a separate copy: use the copies command to allocate enough
copies, then use if copy n to add the attachment, notext to suppress the application text output, and
make sure your other enhancements don’t apply to the attachment copy.

To create an overlay, use the attach command, but allow the text and enhancements to also be
applied on the same copy.

• If the application doesn’t use form-feeds at the end of each page, then the page keyword must be
used to tell UnForm how many lines are used for each page. Many applications, especially with
forms, will use just line feeds when scrolling to the top of each form. UnForm will need to be told
where the end of a page is, in this case.

UnForm Version 5

14

• Use Business Basic programming as a powerful macro language. All the data that is sent by the
application to each page is available for your use. Use this data to get fax numbers and generate
faxed copies, or to print shipping labels derived from the invoice ship-to addresses while packing
lists are printed, or to add additional information such as costs or comments to forms, or to print logs
or send email. See the precopy{} command reference, and the Programming Fundamentals chapter
for more information.

UnForm Version 5

15

INTEGRATING UNFORM WITH BBX4 OR PRO/5

BBx handles printers via alias lines in a configuration file, typically called config.bbx. Printer alias lines
identify a name, an output designation, a description, and several mode options. To incorporate UnForm
into the configuration file on a UNIX system, you need only include an UnForm command line as part of
the output designation.

BBx output designations can specify files, physical devices, or pipes, and UnForm can be installed to
work with any type of definition. To convert any printer definition for use with UnForm, look at the
following examples.

UNIX Spool System Alias

If your printer’s alias line looks like one of these lines:

alias P1 “>lp -dxyz -s 2>/dev/null” “Printer Name” … various modes…
alias P1 “|lp -dxyz -s 2>/dev/null” “Printer Name” … various modes…

Then you need to modify the alias line to look like this:

alias P1 "|unform50 -f my.rul | lp -dxyz –oraw -s 2>/dev/null" “Printer Name” … various modes
…

This simply places UnForm in the pipeline ahead of the spooler. The modes after the printer’s name can
and should remain, since UnForm will pass those through on any print jobs that are not enhanced, and
they will be needed to retain the formats used by the existing reports. Note that only modes compatible
with PCL printers should be used. Don’t use UnForm on an alias line originally designed for another
printer type.

UNIX Device Alias

If your printer definition prints directly to a device, rather than using a spooler, the alias line will look
like this:

alias P1 /dev/lp0 “Printer Name” … various modes…

You need to convert this to a pipe to UnForm, and in turn instruct UnForm to send its output directly to
the device:

alias P1 "|unform50 -f my.rul -o /dev/lp0” “Printer Name” … various modes …

Note that this line will behave differently with the UnForm pipe than without. When opening and
sending output directly to a device, printing will occur immediately, without closing the device.

UnForm Version 5

16

However, with the pipe to UnForm, the output will not appear until the device is closed. The application
may need to be modified to account for this if UnForm is to be used in this circumstance.

If you will be printing binary files on UNIX systems, such as logos via the image command, you might
need to modify the method by which UNIX talks to the printer. In most cases, UNIX performs “post
processing” on everything that is sent to the printer. Post processing adds information to the output,
such as a carriage return whenever a line-feed is encountered. For a binary image, this post processing
causes malformed images to be printed. The method for turning off post processing varies from system
to system.

With the UNIX System V spooler, the spooler print model needs to support an option to turn off post
processing. The option varies by operating system. Some examples include ‘-oraw’ on SCO Unix, ‘-b’
on Linux, and ‘-o-dp’ on AIX. In the printer interface file, make sure the following logic, or similar
logic, is present in the printer interface script, and is invoked by the alias line with the “-oraw” option of
the “lp” command:

graphics=no

for i in $options
do
 case $i in
 r|raw) graphics=yes ;;
 esac
done

if [“$graphics” = “yes”]
then
 stty -opost 0<&1
fi

In the case of direct device output, you will need to develop a site-specific mechanism for turning off
post processing on the device, either permanently, or while an UnForm-modified job is printing.

Windows Alias Lines

Under Windows, where pipes are not available, change the printer definition to create a file, and then use
a post processing mode, called EXECOFF, to execute UnForm with options to read the file and output to
a device.

If the original alias line looks like this:

alias P1 LPT1 "Laser Printer" CR,SPCOLS=132,SP=1B451B287331362E3636481B266B3247

UnForm Version 5

17

Then you can modify the line to look like this:

alias P1 P1.TXT "UnForm Printer"
CR,LOCK=P1.LCK,O_CREATE,SPCOLS=132,SP=1B451B287331362E3636481B266B3247,
EXECOFF="c:\\unform50\\unform50.exe -ix P1.TXT -o LPT1 -f my.rul"

In the above example, a file called P1.TXT is created, using the mode O_CREATE to create the file if it
doesn’t exist, and using a lock file to prevent two users from writing to the same file at the same time.
Note that if a file is specified with a local workstation path, such as C:\\P1.TXT, then a lock file is
probably unnecessary. Just remember to specify the same path in the –ix option. Once the printer is
closed by the application, the code specified by the EXECOFF mode is executed, which runs UnForm as
an executable, using the P1.TXT file as input and the printer as output.

Note that pathnames containing backslashes will need double backslashes, due to the way BBx parses
the command line. For example, to refer to “unform.exe -i c:\data\p1.txt...”, you would need to specify
“unform.exe -i c:\\data\\p1.txt ...”

Another variety of alias line can invoke the Adobe Acrobat Reader program to create and view an
Acrobat document automatically. This option is invoked by using the win or winpvw drivers (-p
option). Here is an example alias line:

alias PUNF PUNF.TXT "UnForm Printer" CR,LOCK=PUNF.LCK,O_CREATE,SPCOLS=132,
EXECOFF="c:\\unform50\\unform50.exe -ix PUNF.TXT -p winpvw -f my.rul"

Printer Aliases Within UnForm

While UnForm can print directly to a device, or to the standard output handle on UNIX, it may be
helpful to use a BBx alias for printing. For example, in a Novell environment, where there is no
“device” that can be used to send output to the Novell spool queue, a BBx print alias that names nspool
as its device can be used. It can also simply be more convenient to refer to an output device by a short
alias rather than a long pipe expression. Printer aliases for use by UnForm can be defined in the file
config.unf in the UnForm directory. When defining such an alias, be sure that no modes are defined that
would cause output to the device (SP, PTON, etc.), as these would conflict with what UnForm sends to
the device. These aliases are referenced in UnForm’s command line with the “-o alias” option.

Special Issues under Visual PRO/5

Under Visual PRO/5, the IO device is invalid and UnForm must run under a minimized terminal alias.
This alias is defined in the file config.unf, as in the following example:

 alias TINV syswindow “” minimized,title=”UnForm”

UnForm Version 5

18

Note that you can’t use the “sysprint” device to access the Windows print driver. If you wish to access
Windows printer, use the “-p win” and “-p winpvw” command line arguments, which use Adobe
Acrobat as a printing/viewing mechanism. If you need to access a network printer, use the print manager
to define a printer, select “Capture Printer Port”, enter the network printer address, and select the LPTn
device. With Windows NT, 2000, and XP, you can’t set up a capture printer this way, but you can use
the DOS command “net use”, which allows routing of a LPT port to a network printer. Net use
connections can be configured to persist across logins. Then in UnForm, use LPTn as the output device.

UnForm Version 5

19

INTEGRATING UNFORM WITH PROVIDEX

ProvideX works with printers in a very different manner from BBx. Instead of a central configuration
file, each printer is defined as a distinct disk file, called a link file. Link files contain two items: an
output device, and a print driver. ProvideX print drivers are ProvideX programs stored in the *lib/_dev
directory. These programs can be modified as any other ProvideX programs.

UnForm is provided with several ProvideX print driver programs, one for each of the different types of
output UnForm can produce. These drivers are copied to the ProvideX lib/_dev directory whenever you
run ufsetup (or ufsetup.exe on Windows) and set up UnForm to run with a ProvideX executable. To use
these drivers, use the ProvideX utilities to define printer link files. The link files should point to the
output device you want (like “>lp –dxx”, \\server\printer, or LPTn), and specify the proper UnForm
driver for the type of output you need (uf_laser, uf_pdf, etc.).

In most cases, the drivers supplied with UnForm can be used without modification. They are designed
to route application output to a temporary work file, and then launch UnForm with appropriate options to
produce output to the device specified in the link file. In some cases, a driver may need to be modified.
For example, if the default rule file is not correct for all print jobs, a copy of a driver may be created, and
a specific rule file specified. Be sure to always modify copies rather than the original driver. Otherwise,
the next time you update UnForm, your customized driver will be overwritten.

Below are the possible changes to each of the driver files.

uf_laser: This driver is used for laser printer output on all platforms. It is possible to override the
default rule file by changing the assignment of %UF_RULEFILE$ to the rule file name. Also, if you
need to execute a script or executable named something other than UnForm, you can change
%UF_UNFORM$. To make the changes, just look for these lines and modify them:

LET %UF_RULEFILE$=""
LET %UF_UNFORM$="unform50"

uf_pdf: Like the laser driver, you can modify the rule file or the executable. In addition, since PDF
output typically goes to a file, you can override the default output device or file (from the link file
definition) to some other value by modifying %UF_PDFFILE$ to the file name desired. You might, for
example, prompt the user for a file name, set the response into a global string, and set %UF_PDFFILE$
to that global string.

LET %UF_RULEFILE$=""
LET %UF_UNFORM$="unform50"
LET %UF_PDFFILE$=""

UnForm Version 5

20

uf_win, uf_winpvw: These two drivers trigger UnForm to send output to the Windows printer or a
Windows preview by producing PDF output and then launching a copy of the Adobe Acrobat Reader on
either the local machine, or the WindX client if the user is running WindX. Like the other drivers, you
can override the default rule file and/or change the executable name for UnForm.

If you are running on WindX, you must also do two things: 1) install an Adobe Acrobat Reader on each
client PC, and 2) modify the %UF_CLIENTREADER$ to full path to the reader executable from the
client’s perspective. This means all clients must have the reader installed in the same location. When
running under WindX, you must be running ProvideX version 4.11 or higher.

LET %UF_RULEFILE$=""
LET %UF_UNFORM$="unform50"
LET %UF_CLIENTREADER$="c:\acrobat3\reader\acrord32.exe"

uf_html: Like the other drivers, you can modify the rule file or the executable. In addition, since html
output typically goes to a file, you can override the default output device or file (from the link file
definition) to some other value by modifying %UF_HTMLFILE$ to the file name desired. You might,
for example, prompt the user for a file name, set the response into a global string, and set
%UF_HTMLFILE$ to that global string.

LET %UF_RULEFILE$=""
LET %UF_UNFORM$="unform50"
LET %UF_HTMLFILE$=""

uf_zebra: The UnForm zebra driver requires some command line arguments to specify the print density
and label size. These are specified by the %UF_DOTSPERMM$ and %UF_LABELSIZE$ values. For
a detailed description of these arguments, look at the –p and –paper options in the UnForm Options
chapter.

LET %UF_RULEFILE$=""
LET %UF_UNFORM$="unform50"
LET %UF_DOTSPERMM$="12"
LET %UF_LABELSIZE$="3.25x5.5"

UnForm Version 5

21

INTEGRATING UNFORM WITH NON-BUSINESS
BASIC APPLICATIONS

UnForm is capable of interfacing with any application that can provide it with text input. On UNIX, this
integration is generally performed via pipes, similar to the way it is integrated with BBx. On Windows,
your application must print to a text file, and then launch UnForm.exe when the printing is complete.

If your application prints by opening a pipe to the spooler, just insert UnForm into the pipeline:

Before: |lp –dprinter –s 2>/dev/null

After: |unform50 –f rulefile | lp –dprinter –oraw –s 2>/dev/null

If your application prints to a device, such as “/dev/lp0”, then you can probably modify it like this:

Before: /dev/lp0

After: >unform50 –f rulefile –o /dev/lp0

If you will be printing binary files on UNIX systems, such as logos via the image command, you might
need to modify the method by which UNIX talks to the printer. In most cases, UNIX performs “post
processing” on everything that is sent to the printer. Post processing adds information to the output,
such as a carriage return whenever a line-feed is encountered. For a binary image, this post processing
causes malformed images to be printed. The method for turning off post processing varies from system
to system.

With the UNIX System V spooler, the spooler print model needs to support an option to turn off post
processing. The option varies by operating system. Some examples include ‘-oraw’ on SCO Unix, ‘-b’
on Linux, and ‘-o-dp’ on AIX. In the printer interface file, make sure the following logic, or similar
logic, is present in the printer interface script, and is invoked by the alias line with the “-oraw” option of
the “lp” command:

graphics=no

for i in $options
do
 case $i in
 r|raw) graphics=yes ;;
 esac
done

if [“$graphics” = “yes”]

UnForm Version 5

22

then
 stty -opost 0<&1
fi

In the case of direct device output, you will need to develop a site-specific mechanism for turning off
post processing on the device, either permanently, or while an UnForm-modified job is printing.

If your application cannot print to a pipe, or runs on Windows, then your application can be modified to
print a text file, then execute UnForm when complete. Your environment may provide a way to do this
automatically, such as the EXECOFF mode in Visual PRO/5 noted earlier. Here is a simple Visual
Basic example of creating a file and launching UnForm:

open “work.txt” for output as #1
print #1,tab(35); ”INVOICE”
… more printing …
close #1
if shell(“unform.exe –i work.txt –o LPT1 –f rulefile”,6)=0 then

end
else

msgbox “UnForm failed to start.”
end if

UnForm Version 5

23

FILES USED BY UNFORM

UnForm uses several text files and executable files, each described below. Unless otherwise noted, all
files are located in the UnForm directory.

/usr/bin/unform50 This is a shell script executable that acts as a UNIX pipe. Various options can be

passed to this procedure, all of which are described under UnForm Options.

unform.exe This is a file that starts UnForm with user specified arguments under Windows.

This file is located in the Windows directory.

unform.ini This file is used on Windows installations to store the startup parameters for the

run-time language. It is located in the Windows directory.

reader.ini This file stores information about Acrobat Reader for use by the –winx drivers.

ufsetup This is a UNIX shell script that creates /usr/bin/unform50 with proper parameters

and directory pointers.

ufsetup.exe This is a Windows program that prompts for the run-time Business Basic location

and creates unform.ini.

unform.cnf This is a simple BBx configuration file used by UnForm.

unform.tpl This is a template UNIX shell script used by ufsetup to create /usr/bin/unform50.

ufparam.txt This contains font and symbol set information. A special version of this file,

“ufparam.txc”, can be defined and customized for a particular site and not be
affected by future updates.

*.bb, *.pv These are program modules, which are executed by the /usr/bin/unform shell

script or unform.exe program. Files ending in “bb” are BBx4 or PRO/5 programs;
files ending in “pv” are ProvideX programs.

subst This is the default parameter substitution file. An UnForm command line

argument can be used to specify a different file. See the text keyword for
information about text substitution.

*.rul These are rule files, one of which is generally specified on the UnForm command

line. Rule files are text files that contain definitions for enhancements to jobs
processed by UnForm. If no rule file is specified, a default rule file is used
instead. The default rule file is specified in the ufsetup program during

UnForm Version 5

24

installation. Rule files can be named in any manner; the .rul extension is simply a
convention. Rule files are described in detail under Rule Files.

rt/* This is the run-time directory. If you have the rt subdirectory in the UnForm

directory, you are running a bundled copy of UnForm.

mailcall.* Bundled email utilities and support files.

UnForm Version 5

25

LICENSING

When first executed, UnForm activates itself as a demo version. A demo version will operate for 30
days, following which it will no longer add enhancements to output. It will, however, continue to pass
data through unchanged. While UnForm is in the demonstration mode, a trailer page indicating that
UnForm is in demonstration mode will follow every enhanced print job.

Bundled and Unbundled Installations

UnForm is available natively in two languages, BBx (also known as PRO/5) and ProvideX. When
integrated with applications written in either of those two languages, UnForm can use the existing
language run-time engine to operate. Such an installation is called an unbundled installation. UnForm
can also be integrated with other application environments, by including a run-time PRO/5. This is
called a bundled installation. When you initially install a bundled version, the demo version includes a
demo version of the run-time. This demo run-time has its own expiration date in addition to UnForm’s
demo expiration date.

Licensing an unbundled version

To convert an unbundled demo version of UnForm to a live version, you must obtain an activation key
from your dealer or the publisher, and that key must be used to activate UnForm. The key is provided
either by email or fax. The serial number of the BBx or ProvideX run-time engine you already have,
along with the type of system (Windows, Intel UNIX, or RISC UNIX) is used to generate the key. An
easy way to view the serial number is to start the activation process, which displays the serial number in
use, and then cancel out of it once you’ve noted the serial number:

On UNIX, enter the command unform50 –act. When done, just enter nothing for the activation key.

On Windows, select the UnForm Activation option from the Start menu. When done, press the Cancel
button.

Once you obtain an activation key for the serial number shown, repeat these steps and enter the
activation key provided.

Licensing a bundled version

Licensing a bundled version first requires that you license the run-time. This license is actually a text
file that is generated based upon an assigned serial number and authorization number, along with a
system ID generated from your computer. This process of obtaining the license file is done via email, by
following these steps:

UnForm Version 5

26

1) Once you place your order, you will receive a serial number and authorization number via email or
fax. Proceed with step 2 for your operating system. On that same sheet will be your UnForm activation
key, which you will need for step 3.

2) Requesting a license on UNIX:

• Change to the SDSI runtime directory, i.e. cd /usr/lib/sdsi/rt.
• Run ./license.sh, and select option 1 – Generate a license request file.
• Answer the prompts for serial number, authorization code, and optionally an email address to

deliver the license file to. This will generate a licreq.txt file in the above runtime directory,
which can then be emailed to licreq@synergetic-data.com. If you can’t email the file
directly, you can copy the file to a system that can, or use an editor to copy and paste its
contents into an email.

• The email is received and validated at synergetic-data.com, and then a request forwarded to
the run-time vendor for a license file for your system. That file will be routed back in reply
to your request, or to an email address that you specified when you ran license.sh. This
process usually takes just a few minutes.

• When you receive the license file, save it or copy and paste it into the pro5.lic file in your
runtime directory. For example, /usr/lib/sdsi/rt/pro5.lic. The file will probably already exist
from the demo installation, so just replace it with the file received. Don’t append the data
received to an existing pro5.lic file. The file contents must be completely replaced with the
license data received.

• You will need to stop the license manager that has been running for the demo version of
UnForm, using ./license.sh again, and choosing option 2. Once stopped, the next execution
of UnForm will be running under the licensed run-time, using your assigned serial number.

2) Requesting a license on Windows:

• From the Start menu, run the UnForm License Request option. This will prompt for the
serial number, authorization number, and an optional delivery email address. Enter this
information.

• Click the Email button to generate a ready-to-send email request using the system’s email
software. This method is compatible with most email packages.

• If the Email button doesn’t work, then chose the Write File button. This will create a file
called licreq.txt that you can email manually to licreq@synergetic-data.com.

• The email is received and validated at synergetic-data.com, and then a request is forwarded to
the run-time vendor for a license file for your system. That file will be routed back in reply to
your request, or to an email address that you specified when you ran the UnForm License
Request. This process usually takes just a few minutes.

• When you receive the license file, save it or copy and paste it into the pro5.lic file in your
runtime directory. For example, c:\sdsi\rt\pro5.lic. The file will probably already exist from
the demo installation, so just replace it with the file received.

3) The final step is then to license UnForm by entering the activation key tied to your new serial number.
For UNIX, enter unform50 –act, and enter your UnForm activation key when prompted. For Windows,
select the UnForm Activation option from the Start menu, and enter the activation key where prompted.

UnForm Version 5

27

Note: Earlier releases of UnForm placed the runtime in a “rt” directory under the UnForm directory.
The runtime location is now outside of the UnForm directory, in /usr/lib/sdsi on Unix, or c:\sdsi on
Windows. It is possible to customize the location of this runtime directory, by setting an environment
variable SDSIRUNTIME to the directory path where you wish the run-times to be installed. This must
be set before UnForm is installed, and also be set for all users when UnForm is executed.

Bundled versions are locked to your system

The license file used by the run-time engine, for either UNIX or Windows environments, is locked to an
ID code generated for your system. If your system changes in a manner that changes this ID code, for
example with a new operating system, a new hard drive, or a new network card, then your license file
will no longer be valid and UnForm will no longer operate. In this case, you can repeat the above steps
to obtain an emergency license file, but this file will have an expiration date and is generally valid for
only seven days. In order to get a new permanent license file for your new hardware, it is necessary to
contact the publisher to ask that the request counter for your serial number be reset. Any time you
obtain a license file that is not permanent, both you and SDSI will receive an email notification of the
expiration date, so immediate steps can be taken to reinstate a permanent license.

One special note regarding system IDs and the Linux operating system: the Linux version of the
licensing process requires a network card in order to obtain a system ID value. UnForm therefore
requires a network card in order to be licensed on a Linux system.

Since your run-time license is tied to a particular system, the run-time can only be executed from that
system. This is different than prior bundled releases of UnForm, where it was possible to launch
UnForm across a network on any machine on that network.

If you run UnForm on a network, please read the next chapter, about network operation, particularly the
client-server option that allows UnForm jobs to be submitted to a copy of UnForm running on a server.

UnForm Version 5

28

UNFORM ON A WINDOWS NETWORK

Network installations of UnForm are more complicated than a single-system installation, but as long as
the installer maintains an understanding of the components of a Windows version of UnForm, it should
be straightforward to get UnForm running on a Windows network.

Unbundled Installations

The most important thing to understand is that when unform.exe is executed, it simply reads the file
unform.ini found in the same path and constructs a command line to launch the run-time vpro5.exe or
pvxwin32.exe and start the UnForm program. This means that the information contained in unform.ini,
specifically the location of the run-time and the home directory of UnForm, must be valid from wherever
unform.exe is executed. If UnForm is installed on a server, but then executed from a workstation, it is
critical that the locations defined in the unform.ini file be valid from the workstation’s perspective. In
addition, all workstations that will execute that copy of unform.exe will need the same configuration.

The easiest way to get this set up is to install UnForm from a workstation, even if it is going to be stored
on a server. That way, when the UnForm Set up program is run, the paths it finds are workstation-based,
so that as long as other workstations use the same paths, they will also be able to run unform.exe
successfully. When choosing a path in which to install UnForm during the initial setup.exe run, choose
a path that will be consistent for all systems that will execute UnForm. This could be a network drive
letter path, such as F:\UnForm50, or a UNC path, such as \\Server1\CShare\UnForm50.

An alternative available with Version 5 is the new UnForm Windows Server, which functions as a
client-server product and can be used with a server-based installation of UnForm, eliminating the need to
launch unform.exe across the network. More information is available below.

Bundled Installations

The bundled run-time that is launched by unform.exe is licensed exclusively for one machine, so it must
be executed from the machine on which it is licensed. If unform.exe is executed from a different
workstation, across the network, the run-time will not operate, because the machine on which it is
running isn’t licensed. In this case, therefore, you should not install UnForm from a workstation onto
the server. Instead, UnForm must be installed and executed locally on each computer that will run
UnForm jobs.

To avoid the expense of licensing a run-time for each workstation, it is usually preferable to use the
UnForm Windows Server and its associated client software to submit jobs from clients to a copy of
UnForm running on a server. That way, only a single license of UnForm and the associated run-time
are required to support a whole network.

UnForm Version 5

29

UnForm Windows Server

New with Version 5 is the UnForm Windows Server and its associated client submission software. This
is a TCP/IP-based server that accepts connections from network clients (the program ufclient.exe) and
executes a server-based copy of UnForm on their behalf. The results can be returned to the client or
printed from the server. Note that the server-based copy of UnForm must have a Windows Server
license, as opposed to a standard Windows platform license, in order to be executed by the UnForm
Windows Server.

To use the UnForm Windows Server, first install UnForm on your server. This can be Windows NT,
2000, or even Windows 98 or ME. It should be a fairly high-powered system, and it is best if it is not
used as a user workstation. It should always be on, of course, so that jobs can be accepted and executed
at any time. If the system is Windows NT or 2000, then you can run the server as a Service, which runs
all the time, even if no user is logged into the system.

Once UnForm is installed, install the UnForm Windows Server software, either from a CD or from an
Internet download. It must be installed on the same system as UnForm. On Windows NT or 2000, it
can be installed as a service from the Start menu, or it can simply be run as an application. A
comprehensive help file is provided with the server for help with configuration and set up issues.

Do not attempt to run the UnForm Windows Server with a version of UnForm prior to Version 5,
particularly if you run the server as a NT service.

Before running the server as a Service, you should first run it as an application and test to ensure your
jobs run smoothly when submitted across the network. A task launched by a service can’t be killed from
the desktop task window, so the only way to turn off hung processes is to stop the service itself. This
will terminate all active and hung jobs, and stop accepting jobs from clients. Jobs that are unexpectedly
terminated may leave bad memory regions, ultimately requiring a system restart if too many jobs are
terminated in this manner.

Distribute the ufclient.exe program to any workstation that will submit UnForm jobs. It can be stored in
a shared location if desired, and launched across the network. The command line argument to
ufclient.exe is very similar to unform.exe. Here are the differences:

• The first argument is always the name or IP address of the server, optionally with a “:port´suffix.
• The –o argument can optionally be prefixed with “server:” to force output to be directed from the

server rather than being returned to the client for local output.

Here are a few examples:

This example will print UnForm version information from the server "alfred": ufclient alfred -v

UnForm Version 5

30

This example will print a laser job to the local LPT2 port. The input file resides on the client. The rule
file, alfred.rul, resides in the server's UnForm directory: ufclient alfred -i c:\temp\file001.txt -o LPT2 -
f alfred.rul

This example will create a pdf file on the client, using UnForm’s default rule file on the server: ufclient
alfred -i c:\temp\file002.txt -p pdf -o c:\temp\file002.pdf

This example will print a laser job, using a full server path to the rule file (rule files always reside on the
server), to a network device, directly from the server: ufclient alfred -i c:\temp\file001.txt -o
server:\\alfred\hp4000 -f c:\unform50\alfred.rul

This example will create a temporary pdf file and display it on the client, assuming the client has Adobe
Acrobat installed: ufclient alfred -i c:\temp\file001.txt -p winpvw -f alfred.rul

Windows Device Printing

UnForm can print to Windows network devices in a couple of ways. The basic concept is that UnForm’s
PCL output needs to go directly to a device, so it can’t go through a normal Windows print driver. A
direct device can be either a LPTn port, or a printer alias defined in the config.unf file in the UnForm
directory.

For a local laser printer attached to LPT1 on the system that runs UnForm, then you can simply specify
the LPT port in the –o UnForm option, like “-o LPT1”.

For a remote printer, you can still use a LPT port. The port doesn’t need to be physically attached to a
printer. You can tell Windows to capture data destined for a LPT port and route it to a network shared
printer. On Windows 98, when defining a printer’s properties, you can click the Capture button to
specify a LPTn port number and a network printing device to capture to. Then UnForm’s –o option
would be ‘-o LPTn’, where n is the LPT number specified in the capture definition. On Windows NT or
2000, you can use the MS-DOS “net use” command. For example: NET USE LPT3
\\MYSERVER\HPLASER /PERSISTENT:YES, would route any UnForm -o LPT3 output to
\\myserver\hplaser.

The alias option provides an indirect route, and works with either LPT ports or network shares. For
example, you could add a line to config.unf like this:

alias P0 //myserver/hplaser (or with double backslashes: alias P0 \\\\myserver\\hplaser).

Then you could use “-o P0” on the UnForm command line. Note that printer aliases must start with a
capital letter L or P.

UnForm Version 5

31

USER COUNTS

UnForm uses a BBXPROGRESSION/4, PRO/5, or ProvideX run-time user slot while processing data
from a report. This is the case even if no enhancements are added to the data. The user slot is returned
to the user count pool once the output processing is complete, but some reports can print for a long time,
and will occupy that user slot until the report is complete.

Under Windows, with the Visual PRO/5 or ProvideX run-time, each workstation can have multiple
instances of the run-time running, so this user restriction is less likely to be important.

Under UNIX, if UnForm cannot start the run-time because there are no user slots available, then it will
retry several times until it is successful. If, after several retries, it is unable to start a BBx task, then the
report will be sent through without any processing at the UNIX shell level. If this occurs, or there is
another problem with starting a BBx task, a page will be printed after the report describing the BBx error
that occurred. The script that performs the retries (/usr/bin/unform50) can be modified to support more
retries and/or longer retry pauses. To modify the script, adjust the time= and retry= lines.

Most sites have several available user slots available at any given time, so this does not become an issue,
but if your site often uses all available slots, then you may need to purchase a license for more users to
accommodate UnForm. A separate license may be purchased for PRO/5 or Visual PRO/5 from your
dealer or the publisher.

To minimize the impact that UnForm has on your user counts, it is advisable to only install UnForm on
printer definitions for which it may be used. If your site has many printers, but only a few are used to
print forms, then just install UnForm on those few.

UnForm Version 5

32

UNFORM OPTIONS

UnForm can be started with one or more options, which control various aspects of how it works.
Without any options specified, UnForm does nothing more than pass data through as is. These options
are described below.

Option Description
-300 This option causes UnForm to suppress 300 dpi settings

within the PCL output file. Some PCL devices don’t
support the PCL unit of measure command, and instead
include it as printed output. If this option is used, any
images (dump files) or attachments must also be generated
for 300 dpi and suppress any unit of measure settings.

-act This option will cause UnForm to prompt for a new
activation key. This is used when you change from a
demonstration copy of UnForm to a live copy. The driver
being activated can be specified with the “-p driver”
option placed before –act in the command line.

-c copies This option causes UnForm to issue multiple copies of the
entire report. This differs from the -pc option. If copies is
set to less than 2, this option is ignored. This option and
the "-pc" option are mutually exclusive; also, rule sets can
specify copy options that will override command line
options.

-cmp or –compress Either of these options will cause UnForm to attempt
compression of PDF output using the RLE compression
algorithm. This is most effective if the report data
contains repetitions of characters or spaces, and can result
in PDF files that are as much as 30% smaller.

Some additional processing time is used when this option
is selected. You can turn on compression for individual
jobs using the compress command in a rule set.

-e error-file This option causes UnForm to output any errors to the file
specified.

UnForm Version 5

33

-exec “launch-
program”

When the HTML output option (-p html) is used, UnForm
can launch a program once the first page of output is
available for viewing. The program launched must be
resident on the machine where UnForm is operating.
Typically this will be a Web browser, but it can be any
executable program. UnForm will search the “launch-
program” for the character “@”, and substitute the file
name of the HTML document produced. If no “@”
symbol is present, then the file name is appended to the
end of the launch-program value. If launch-program
contains any spaces, it must be quoted.

-f rule-file This option is used to establish a different rule file than
the default specified during the installation. Rule files are
text files that contain descriptions of the form
enhancements for one or more forms. The enhancement
options are described in detail under Rule Files, below.

UnForm will always search for the rule file first in the
UnForm directory, then by the full pathname given.

-gs Causes UnForm to generate laser driver shade regions
graphically, rather than using internal PCL shade
commands. The result is finer shading detail, especially at
600 dpi. Using this option will result in much larger
output sizes, so it is not recommended when
communication speed to the printer is limited. For
example, at 600 dpi, a 1 square inch shade region will use
about 5.5K at 1%, 7K at 10%, and 25K at 50%. The same
internal shade commands each take a few dozen bytes.

Note that this option can cause very long string values to
be generated, so it is not suitable if the run-time
environment is ProvideX at releases before 5.0.

The gs command can also be used in rule sets to control
graphical shading at a copy level.

-gw Forces UnForm to pass through PCL image width and
height escape sequences to the printer. This is sometimes
necessary on color (RTL) images to avoid a black stripe
from the right image edge to the right margin. However, if
you are using PCL images, then it is important that all
images on a form contain width and height values so they
won’t conflict with one another. Some image generating
programs don’t store the width and height values.

-h This will cause Help text to be printed to your screen.

UnForm Version 5

34

-i input-file This option allows UnForm to process an already existing
text file. If not specified, then standard input (stdin) is
read. Under Visual PRO/5, standard input cannot be used,
so an input file must be supplied.

-ix input-file This option is the same as the –I option except the input
text file is removed upon completion of task.

-land Turns on landscape print mode as the default. A portrait
command in a rule set will override this option. Note that
landscape printing usually requires a reduction in the
number of rows per page, as compared with portrait
printing, in order to produce usable results.

-macros This option turns on macros.
-macrocopy n This option is used in conjunction with the –makemacro

option. A macro will be created for the designated rule set
copy.

-makemacro n This option causes UnForm to simply create the
appropriate macro for the designated rule set and designate
it as the number n. It must be used jointly with the –r
option and can be used in conjunction with the
-macrocopy option. See special section discussing macros
later in this documentation.

-o output-file This option allows UnForm to send output to a text file. If
not specified, then standard output (stdout) is written.
Under Visual PRO/5, an output file must be supplied. In
addition to files or devices, the output can be a printer
alias named in the config.unf file, or (on UNIX) can be a
pipe prefixed by a “|” character: -o “|cat
>>/usr/archive/file.txt”. Output names that contain
spaces should be quoted.

UnForm Version 5

35

-p output-format This option allows you to specify the output format. The
default format is laser. Other formats are:

zebran, which produces ZPL II output at n dots per mm
(6, 8, or 12 – default of 12) for Zebra label printers.

html, which generates Web pages from reports, based on a
special set of rule set keywords.

pdf, which generates files viewable by Adobe Acrobat.
Adobe provides a free Acrobat Reader program, and
Windows versions of UnForm include the reader.

win, winpvw, which automatically produce a PDF file and
launch the Acrobat Reader. win will automatically print
the document, after issuing a print dialog. winpvw will
provide a print preview by launching the Acrobat Reader.

The win and winpvw drivers are the only drivers available
for UnForm Lite licenses.

For special Zebra media handling, you can append the
following to zebran:
• Media tracking: (Y=standard, N=non-standard label

stock). Standard label stock is non-continuous.
NOTE: changing between standard and non-standard
requires recalibrating the printer.

• Set print modes (T=tear-off, R=rewind, P=peel-off,
C=cutter).

The default values are YT. For continuous labels, 8
dpmm, you would specify –p zebra8NC.

-page lines Use this option to specify the number of lines per page
that UnForm should read from the input. Normally,
UnForm will find form-feed characters to delimit pages.
However, if the application simply prints even numbers of
lines per page, this can be used to define that value so
UnForm can properly parse the input stream. The rule file
page command is normally used rather than this command
line option, since different reports can have different page
sizes. However, this option is useful when doing cross
hair prints (the -x option) to properly parse individual
pages.

UnForm Version 5

36

-paper paper
-ps paper

Specifies the paper size used by the printer. Valid values
are letter, legal, ledger, executive, a3, and a4. The default
is letter.

For Zebra printers, the paper setting is generally required,
and is in the format widthxheight, where width and height
are decimal numbers indicating height and width in inches
of each label. 3.25x5.5, for example, would define a label
size of 3.25 inches by 5.5 inches. The default size is 4x6.

-pc copies

This option causes UnForm to issue multiple copies of the
report, page by page. If copies are less than 2, this option
is ignored. This option and the "-c" option are mutually
exclusive; also, rule sets can specify copy options that will
override command line options.

-printblanks
-pb

This option causes UnForm to process blank pages the
same as non-blank pages.

-prm ”parameters” This option provides the ability for the application to send
parameters to UnForm on the command line. This might
be used, for instance, to pass a company number for use in
a code block. The format for paramters is “parameter-
1=value-1[;parameter-2=value-2;...]” Any number of
parameters can be specified within the limits imposed by
the operating system for command line length. Each
parameter becomes a global string in Business Basic
(STBL or GBL), and each is set to the value specified.
Multiple parameters need to be delimited by semicolons
(;). -prm ”company=01;name=Acme Paint”, for
example, would establish two global strings: company and
name. These could be referenced within code blocks
(prepage, precopy, etc.) as STBL(“company”) (GBL on
ProvideX) and STBL(“name”).

-r rule-set

This option can be used to set a form name rule set to use
within the rule file specified. If this option is not used,
UnForm will attempt to automatically detect what form is
being processed based on specifications contained in the
rule file. If no form is detected, then UnForm simply
passes all the text of the report through the pipe. If the
rule-set contains spaces, it should be quoted. Rule set
names are not case sensitive.

-rland
-rport

Turn on reverse landscape or reverse portrait orientation.
These options are only valid on laser output.

UnForm Version 5

37

-s sub-file

This option specifies a text file to be used as a substitution
file. Substitutions are used by UnForm when placing text
in the form output. If the text can vary from one form to
another, such as company names and addresses, then
multiple substitution files can be defined, each containing
different names and addresses, and the proper one
identified with this command line option. See the text
keyword for more information. The default substitution
file is called "subst". If sub-file is not a full path, UnForm
will look for it in the UnForm directory. UnForm will
automatically generate stbl(“@name”) definitions for each
line in the substitution file. Code blocks and expressions
can use the stbl() function (gbl() on ProvideX) to return
these values.

-shift n Cause all input text to shift n columns to the right, similar
to the action of the shift command. This can be useful in
conjunction with the –x crosshair option to force text to
match the alignment it would have with a shift n command
in a rule set.

-testpr font symset When executed with this option, UnForm will generate a
test print showing nearly all characters (ASCII 1 to 253) in
the font and symset codes identified. For a list of font
codes and symbol sets, see the ufparam.txt file, sections
[fonts] and [symsets], respectively.

This option supports both laser and PDF drivers. To
generate a PDF file, add “-p pdf” to the command line.
Output can be sent to a file or device with the “-o” option,
or on UNIX can be piped to standard out. Note that with
the PDF driver, the only symbol set used is 9J.

-v This option will cause UnForm to print version
information and exit.

-vshift n Causes all input text to shift n rows down, similar to the
action of the vshift command. This can be useful in
conjunction with the –x crosshair option to force text to
match the alignment it would have with a vshift n
command in a rule set.

UnForm Version 5

38

-x [page[,page, …]]
-xl [page[,page, …]]

This option causes the first page of output to be printed
with a cross hair pattern. This is typically done once to
assist in determining placement of text, and then removed.
Sometimes, a special printer definition is set up within an
application, using the -x option, so that any form can be
printed to that printer for layout purposes. Note that
setting the environment variable UFC to "y" will cause
this option to be automatically implemented.

Optionally, specify one or more (comma-delimited with
no spaces or hyphenated for ranges) page numbers to get
UnForm to produce cross hair patterns on specific pages
of the input stream. If the input doesn’t contain form-feed
page delimiters, be sure to use the –page option as well.

The –xl option will produce a landscape version of the
crosshair printing.

UnForm Version 5

39

VERSION 5 FEATURES

Easier emailing of pdf files
Use the new email command within a pdf rule set to email the file upon completion. Prior versions
required code block programming to support emailing. See the email command for more information.

Multi-line text handling
New features of the text command support paragraph and multi-line modes to make it easier to manage
blocks of text. Features include word-wrapping and shrink-to-fit options, point-size based line height,
and new block-oriented functions such as mget and mcut to work with blocks of data at one time. See
the text command and the precopy/prepage commands for more information.

Grid options in box drawing
New options on the box command provide for drawing of horizontal and vertical grid lines and shade
bars inside a box, making it easier and quicker to draw the grids so common in forms. See the box
command for more information.

Expression support in column and row values
While former versions of UnForm support expressions in text values and file names, this version
supports expressions in all positioning and size elements. It is possible to create numeric values based
upon any programming logic desired and use those variables for positioning and sizing of text, boxes,
and virtually any other enhancement. Expression support reduces the need to rely on performance-
hungry exec() functions, and also extends to non-graphical elements, such as font commands.

Expanded exec() function support
The exec() function now supports commands related to the input text stream, such as font, bold, and
erase, in addition to the graphical commands, such as text, box, and barcode.

Expanded detection capabilities
You can now detect over column and row ranges rather than the “exact” or “anywhere” options
supported in prior releases. You can also detect the non-occurrence of values or regular expressions. See
the detect command for more information.

UnForm Windows Client-Server
A new Windows print model supports the use of a single installation of UnForm on a server, and a tiny
client to submit jobs from any workstation on the network. This is especially important with bundled
Windows installations, where UnForm 5 will require execution on the licensed machine. See the
UnForm on a Windows Network chapter for more information.

Other enhancements
• Control over pdf outline display levels, using a new option on the outline command
• Crosshair printing control from the rule set, with the crosshair command, so you can apply a grid

over both text and enhancements during development

UnForm Version 5

40

• Run-time rule-set merging, using the merge command, reduces redundancy in rule sets and supports
team development

• Graphical shading support on laser printing, using the gs command, adds a more professional look
• New case conversion support in the font command makes it easy to apply Proper Case (sometimes

called Title Case) to regions without changing your application

New Licensing Model for Bundled Installations
For those users who license a bundled run-time engine with UnForm, there is a new licensing model that
has been adopted to allow current run-time executables to be included with UnForm. Licenses are now
linked to the system on which UnForm is installed. The licensing process is now file-based rather than
activation key-based, and is handled very smoothly via email. See the Licensing chapter for more
information.

UnForm Version 5

41

RULE FILES

Rule files are text files that contain descriptions of form enhancements. There can be any number of
these enhancements, called rule sets, in a rule file. A header line composed of a unique name enclosed
in square brackets indicates a new rule set. For example, an invoice form rule set would begin with the
line "[Invoice]", followed by several lines indicating enhancements to the invoice output sent by the
application. Without a rule set to work with, UnForm will not perform any enhancements. UnForm
determines which rule set to work with based on either a command line option (-r), or detect commands
contained in the rule set.

The enhancements that follow the [form-name] line are made up of commands and (usually) a list of
parameters separated by commas. The available enhancements are described on the following pages.

Unless otherwise noted, all column and row specifications are 1-based (i.e. the first column is 1, rather
than 0).

Commands that have parameters accept either a space or an equal sign between the keyword and the first
parameter; page 66 and page=66 are equivalent.

If a command and its parameters require a large amount of text, it is possible to split a command across
multiple lines by adding a backslash character at the end of a line to indicate the command continues on
the next line. You can have as many continuation lines as necessary. UnForm removes leading spaces
and tabs from continuation lines, so you can use indention to improve readability, as long as you
remember to place any required spaces before the backslash on the initial line. For example:

text 1,30,”This line of text is continued \
 on this line.”,12,cgtimes

The driver differences and support for different keywords is noted. Note, however, that when a
command indicates all drivers, this doesn’t necessarily indicate support by html. For the html driver,
please refer to the HTML chapter.

UnForm Version 5

42

ACROSS

Syntax

across n

Description

This instructs UnForm to allocate virtual pages across the physical page, evenly spaced within the left
and right margins. Use this feature for multi-up printing of standard reports, or for laser labels.

UnForm will automatically scale text (to as small as 4 point), boxes, and shading. It will not scale
images, barcodes, or attachments. Also see the down command.

Across can be used inside an ‘if copy’ block, but is only compatible with non-collated copies. As a
result, copy-specific across is only available in the laser driver, and only in conjunction with the copies
command, not pcopies.

Drivers: laser, pdf

UnForm Version 5

43

ATTACH

Syntax

attach “filename” | {expr}

Description

This will add the specified file to the output. The file will be added before any other text or data for a
given copy is sent to the printer, so this can work as an overlay file, or it can be placed in the output
instead of any text or other output, appearing like a stand-alone attachment.

If expr is used, then it should be a valid Business Basic expression that resolves to a string value, which
will be interpreted as the file name as each copy prints.

When used as an attachment, assign a copy to the attachment, and use the notext keyword to suppress
printing of text, like this:

if copy 2
attach “/usr/unform/attach/attach1.pcl”
notext
end if

When processing the file, UnForm will remove any printer initialization codes and page ejects from the
file.

The easiest way to create an attachment file is to use a Windows workstation and install a PCL5 type
printer, such as the HP LaserJet III or higher. Set the port for the printer to FILE:. Then create the
attachment using any word processor and print to that printer. Windows will ask for a file name, and
when printing is complete, the resulting file is suitable for use as an attachment. If your document
contains fonts that are not present in the printer you will be using, be sure to modify the print driver to
print True Type Fonts as graphics.

To create an attachment file for the pdf driver, use Adobe Distiller, part of the Adobe Acrobat product.
When using Distiller, be sure to set the job options to turn OFF the "Optimize PDF" flag, and ON the
ASCII flag. UnForm's pdf parser relies on a standard (old) pdf file format, which the optimization does
not produce.

Drivers: laser (pcl format), pdf (pdf format)

UnForm Version 5

44

BARCODE (PCL,PDF)

Syntax

1. barcode col|{numexpr}, row|{numexpr},"value"|{expr},symbology,height,spc-pixels

2. barcode “text|~regexpr|!=text|!~regexpr”, col|{numexpr}, row|{numexpr}, "", symbology, height, spc-
pixels, getoffset cols, getcols cols, eraseoffset cols, erasecols cols

Description

col and row determine upper left corner of the barcode. If used, numexpr is a Business Basic expression
that generates a numeric value for the column or row.

value is a text string, up to 28 characters, to barcode. Often this is symbology dependent. If check digits
are required, they are generated internally in UnForm.

expr is a Business Basic expression that generates the text to barcode.

symbology is one of the following numbers:

Code Description
100 UPC VERSION A
105 UPC VERSION A + 2 DIGIT SUPPLEMENTAL ADD-ON
110 UPC VERSION A + 5 DIGIT SUPPLEMENTAL ADD-ON
125 UPC VERSION E
126 UPC VERSION E supporting number series 1, 6-digit input
130 UPC VERSION E + 2 DIGIT SUPPLEMENTAL ADD-ON
135 UPC VERSION E + 5 DIGIT SUPPLEMENTAL ADD-ON
150 UPC/EAN/IAN – 13
155 UPC/EAN/IAN – 8
200 INTERLEAVED 2 OF 5 – 2:1 CHECK DIGIT
205 INTERLEAVED 2 OF 5 – 2:1 NO CHECK DIGIT
220 INTERLEAVED 2 OF 5 – 3:1 CHECK DIGIT
225 INTERLEAVED 2 OF 5 – 3:1 NO CHECK DIGIT
300 STANDARD CODE 2 OF 5 – 2:1 CHECK DIGIT
305 STANDARD CODE 2 OF 5 – 2:1 NO CHECK DIGIT
320 STANDARD CODE 2 OF 5 – 3:1 CHECK DIGIT
325 STANDARD CODE 2 OF 5 – 3:1 NO CHECK DIGIT
400 CODE 39 (3 OF 9) – 2:1 NO CHECK DIGIT
405 CODE 39 (3 OF 9) – 2:1 CHECK DIGIT
410 CODE 39 (3 OF 9) – 2:1 NO CHECK DIGIT (FULL 128 ASCII)
415 CODE 39 (3 OF 9) – 2:1 CHECK DIGIT (FULL 128 ASCII)
440 CODE 39 (3 OF 9) – 3:1 NO CHECK DIGIT

UnForm Version 5

45

445 CODE 39 (3 OF 9) – 3:1 CHECK DIGIT
450 CODE 39 (3 OF 9) – 3:1 NO CHECK DIGIT (FULL 128 ASCII)
455 CODE 39 (3 OF 9) – 3:1 CHECK DIGIT (FULL 128 ASCII)
500 CODE 93
600 CODE 128 – SERIES “A”
605 CODE 128 – SERIES “B”
610 CODE 128 – SERIES “C”
700 CODABAR – NO CHECK DIGIT
705 CODABAR – CHECK DIGIT
900 USPS Postnet – 5 DIGIT
905 USPS Postnet – 9 DIGIT
910 USPS Postnet ABC – 11 DIGIT

height is expressed in points or pixels. If it is an integer, such as 50 or 175, then it is treated as pixels at
300 dpi. If it is a floating-point number, like 18.7 or 12.0 (it contains a decimal point), then it is treated
as points (1 point=1/72 inch). The maximum height is 3000 pixels.

spc-pixels is the number of pixels to allocate to spacing between bars, from one to 50, the default being
2.

In syntax 2, triggered by a quoted value as the first argument, barcodes will be generated at all locations
on a page where the text or the regular expression regexpr occurs. The value(s) to barcode will be based
upon what text matches occur. Each match will determine the value to barcode based on the word found
(up to the first space or the end of the line), and the placement of the barcode. The value to barcode can
be adjusted by the getoffset cols (integer columns from the location of the match) and getcols cols
(number of columns to use for the value). The location of the barcode can be adjusted by the col and
row parameter, where 0,0 is the location where the match is found. The match text found can be erased
from the report by setting eraseoffset cols and erasecols cols.

If the syntax “!=text” or “!~regexpr” is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

The search for text or regexpr can be limited to a region on the page by adding a suffix in the format
‘@left,top,right,bottom’. To use a literal “@” character in text or regexpr, it is necessary to specify
“\@”.

Version 5 Note: The positioning algorithm for pdf versions of the barcode was modified in version 5 to
match the positioning of laser barcodes. If your application depends on this older algorithm, then you
can modify your ufparam.txt file (preferably by copying it to ufparam.txc and them modifying that file,
to avoid losing your changes during an update), to add (or change) ‘v4pdfbcd=1’ in the [defaults]
section.

Drivers: laser, pdf

UnForm Version 5

46

Examples:

barcode 10.5,22,{get(10,21,5)},900,12.0,2 will add a 12.0 point high, 5-digit Postnet barcode based on a
zip code found at column 10, row 21.

barcode “bcd:@16,22,20,55”,0,0,””,600,75,2, getoffset 5, getcols 10, erasecols 15 will search for data
starting with “bcd:” in the region starting at column 15, row 22, through column 20, row 55, barcode the
10 characters following it, and erase the underlying text.

UnForm Version 5

47

BARCODE (ZEBRA)

Syntax

barcode col|{numexpr}, row|{numexpr}, ("value" | {expr}), symbology, height, spc-pixels, text
[above|yes|no], rotate [90|180|270], ratio rvalue, checkdigit, start startc, stop stopc, ucc, mode m,
security s, cols c, rows r

Description

col and row define the upper left corner of the barcode. If used, numexpr is a Business Basic expression
that generates a numeric value for the column or row.

value is a literal value to barcode, expr is a Business Basic expression that generates the text to barcode.

symbology is one of:

Symbology Code Name
1 Code 11
2 Interleaved 2 of 5
3 Code 39
8 EAN-8
9 UPC-E
A Code 93
C Code 128
E EAN-13
I Industrial 2 of 5
J Standard 2 of 5
K ANSI Codabar
L LOGMARS
M MSI
P Plessey
S UPC/EAN extensions
U UPC-A
Z Postnet
4 Code 49
7 PDF417
B CODEABLOCK
D UPS Maxicode

For Maxicode, you may specify a mode of 2 for UPS US addresses, 3 for UPS non-US addresses, or 4
for non-UPS coding (the default is 2). The data must consist of 2 segments:

UnForm Version 5

48

Segment 1:
• Mode 2: 3 digit class of svc, 3 digit country code, 9 digit zip code
• Mode 3: 3 digit class of svc, 3 digit country code, 6 character zip code

Zebra requires this segment; the remaining segment format is specified by UPS.

Segment 2:
• Data content as required by UPS, starting with the "[)>"+$1E$ header.

For modes other than 2 or 3, segment 2 can contain variable content.

height is either an integer, interpreted as the number of pixels, or a decimal number, such as 20.0 or
40.6, interpreted as points (1/72 inch).

spc-pixels is the narrow bar width in pixels, from one to 10, defaulting to 2.

Following spc-pixels, the options can be in any order.

Rotate will rotate the barcode the given number of degrees.

Ratio will modify the wide bar to narrow bar ratio, from 2 to 3 in 0.1 increments. The default ratio is
2.0. Some symbologies have fixed ratios.

text or text yes will print the human readable value below the barcode. text above (or just "above") will
print this value above the barcode.

text no will not print the value, even if that is the default for the given symbology.

checkdigit will cause a checkdigit to be calculated and printed by the printer.

start char will set the start character, if used by the symbology.

stop char will set the stop character.

ucc will set the UCC Case Mode on code 128 barcodes.

mode m will set the mode code, which is symbology dependent. The UCC case mode may be set for
code 128 with 'mode U'. The code 49 mode can be A for auto, or 0-5 as defined in the ZPL
programmers' guide.

security n sets the security and/or error correction level for the PDF417 bar code. n can be a digit from 0
to 8.

UnForm Version 5

49

cols c, rows r sets the cols and rows values for the PDF417 barcode. If not set, this barcode will assume
a 1:2 row to column aspect ratio. c can range from one to 30, r from 3 to 90, and the product of c x r
can't exceed 927.

Drivers: zebra only

UnForm Version 5

50

BIN

Syntax

bin bin-number

Description

The bin keyword is used to specify the output bin for any copy. Larger, departmental laser printers often
have two or more bins, allowing print job output to be separated. In UnForm, you can specify a bin for
each copy, or for the whole job.

bin-number is printer specific, with one generally being the top, face down bin, and 2 being a side or rear
face-up bin. Some models may offer additional bins; see your printer’s documentation for additional bin
codes.

Driver: laser

UnForm Version 5

51

BOJ, BOP, EOJ, EOP

Syntax

1. {boj | bop | eoj | eop} hex codes
2. {boj | bop | eoj | eop}“text string”

Description

These keywords provide the ability to add escape codes to the beginning of the job (after the printer is
initialized but before any data prints), before each page of each copy, after each page of each copy, and
after the job ends, just before the printer is re-initialized.

The escape sequences can be entered either as hex codes, such as 1b28633045 (interleaved with spaces if
desired), or as a text string. To enter a text string, the value must be quoted.

When entering a text string, it is possible to include non-printable characters with angle bracket notation,
such as “<27>&k10G”, where “<27>” is used to include an escape character.

UnForm will normally provide all the control needed for a job. These keywords are included to handle
unusual requirements.

Drivers: all

UnForm Version 5

52

BOLD, ITALIC, LIGHT, UNDERLINE

CBOLD, CITALIC, CLIGHT, CUNDERLINE

Syntax

1. bold|italic|light|underline col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}

2. bold|italic|light|underline "text|!=text|~regexp|!~regexp", col|{numexpr}, row|{numexpr},
cols|{numexpr}, rows|{numexpr}

If cbold, citalic, clight, or cunderline is used, then columns and rows are interpreted to be the opposite
corner of the region, and columns and rows are calculated by UnForm.

Description

The region indicated by the col, row, cols, and rows parameters will have the indicated attribute (bold,
italic, light, underline) applied. All text in the input within that region, but not text generated by text
keywords, will be affected. If used, numexpr is a Business Basic expression that generates a numeric
value for the column, row, columns, or rows.

If format 2 is used, then the region is defined relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no affected regions, or several.
Column and row are 0-based, in these formats. The search for text or regexpr can be limited to a region
on the page by adding a suffix in the format ‘@left,top,right,bottom’. To use a literal “@” character in
text or regexpr, it is necessary to specify “\@”.

If the syntax “!=text” or “!~regexpr” is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Examples

bold 1,5,30,4 bolds a region from column 1, row 5, for 30 columns and 4 lines.

underline "TOTAL:",0,0,36,1 underlines a region beginning at a position where the text "TOTAL:" is
found, extending for 36 columns. If “TOTAL:” isn't found, the keyword is ignored until the next page is
analyzed.

Drivers: laser, pdf. underline and light is supported on laser only. Not all pcl fonts support the light and
bold options.

UnForm Version 5

53

BOX, CBOX

Syntax

1. box col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,thickness] [,shade] [,color]
[,rgb rrggbb] [,dbl|double [gap]] [,left l] [,right r] [,top t] [,bottom b] [,icols=gridcols]
[,irows=gridrows] [,ccols=gridcols] [,crows=gridrows]

2. box "text|!=text|~regexp|!~regexp", col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}
[,thickness] [,shade] [,color] [,rgb rrggbb] [,dbl|double [gap]] [,left l] [,right r] [,top t] [,bottom b]
[,icols=gridcols] [,irows=gridrows] [,ccols=gridcols] [,crows=gridrows]

If cbox is used, then columns and rows are interpreted to be the opposite corner of the box, and columns
and rows are calculated by UnForm.

Description

A box of the indicated dimensions will be drawn. All dimensions can be specified to 2 decimal places,
in the range of -255 to +255. Whole number col and row represent center points; lines are drawn to the
center point of the character position identified in order to facilitate connections between lines. This
differs from the shade keyword, which shades full character cells. It may be easier to use the box
keyword’s shade parameter than to calculate shade positions that are offset from similar box parameters.
To draw lines rather than boxes, simply set the cols or rows to 1. If both cols and rows are 1, then a
vertical line is drawn one character high. To draw a box that is one column wide or one row deep, use
1.01 or .99. If used, numexpr is a Business Basic expression that generates a numeric value for the
column, row, columns, or rows.

If syntax 2 is used, then the box is drawn relative to any occurrence of the text, or of text that matches
the regular expression regexpr. In these cases, there may be no boxes drawn, or several. Column and
row are 0-based, in these formats, and can be negative if required. The search for text or regexpr can be
limited to a region on the page by adding a suffix in the format ‘@left,top,right,bottom’. To use a literal
“@” character in text or regexpr, it is necessary to specify “\@”.

If the syntax “!=text” or “!~regexpr” is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

The optional thickness parameter may be a number from one to 99, indicating the number of dots or
pixels to use when drawing the box outline. The default thickness is one. UnForm always uses dots at
1/300 inch. If a shade parameter is desired, then the thickness parameter is required.

The optional shade parameter may be used to specify a “percent gray” value of from one to 100. Most
laser printers can only print about eight different shades of gray, so a value of 45, for example, may print
the same pattern as 50. Note that if you specify a shade level of 0, this differs from not specifying any

UnForm Version 5

54

shade at all: a shade level of 0 will force a white interior, even if another box or shade command draws
shading inside the bounds of the box.

Color can be specified as white, cyan, magenta, yellow, blue, green, red, or black, or you can name an
RGB value as a 6-character hex string with rgb rrggbb, where rr is red (00-FF), gg is green (00-FF), and
bb is blue (00-FF).

The left, right, top, and bottom options override the specified thickness for any given side of the box.
Setting left 0, for example, would erase the left side of the box, while "right 4" would set the right side to
4 pixels wide.

The double or dbl option indicates a double-lined box. Both the inner and outer lines will be drawn at
the normal thickness, and the optional gap may be specified to set the pixels between each line. The
default gap is ` pixel. The gap must be a digit between 1 and 9.

The gridcols and gridrows settings are used to draw grid lines and/or shade regions inside the box.
Gridcols specifies one or more vertical column settings in the structure of column[:thickness[:shade]].
Multiple columns can be delimited by any character other than digits, the decimal point (.), and the
colon. Each column designates a vertical line to draw from the top to bottom edges of the outer box. If
a thickness is specified, then the line is drawn using that thickness (0 would draw no line at all). The
default thickness is 1. If shade is specified, then a shade region is draw from the left edge or prior
column. Gridrows is identical in structure to gridcols, but specifies the horizontal rows rather than
vertical columns. The icols and irows introducers indicate columns and rows relative to the upper left
corner of the outer box. The ccols and crows introducers indicate absolute columns and rows. In each
case, any column or row specification outside the bounds of the box are ignored.

For partial shading, partial color shading, or multiple colors shading, see the shade keyword. You can
improve the look of shade regions on laser printers, especially at medium shade levels and 600 or higher
dpi settings, by using the gs command.

Examples

box 5.5,2.5,34,3,2,10 will draw a box 34 columns wide and 3 lines high, at column 5.5, line 2.5. The
box border will be 2 dots wide (1/150 inch). It will be filled with 10% gray shading.

box 1,1,55,1 will draw a vertical line, 55 lines high, at column 1, line 1.

box "Customer Total",-1,-1,60,3 will draw a box around the text "Customer Total" and 44 columns
beyond it.

cbox 12,{start_row-.5},40,{end_row+.5} will draw a box with the top and bottom lines based on two
numeric variables, which would have been previously calculated in a prepage or precopy code block. In
using the “cbox” version, the second pair of numbers indicates the lower-right corner, rather than the
number of columns and number of rows. The code block used to calculate these positions might look

UnForm Version 5

55

something like this code, which finds the first and last rows that contain any data in the row range of 22
through 55:

prepage{
start_row=0,end_row=0
for line=22 to 55
 if trim(text$[line])>”” then if start_row=0 then start_row=line
 if trim(text$[line])>”” then end_row=line
next line
}

cbox .5,22,80.5,66,3, ccols=10.5 30 55.5 67.5, crows=23.25:1:20 60 will draw a box from column 0.5,
row 80 through column 80.5, row 66. The lines of this outer box will be 3 pixels wide. Inside this box
will be vertical lines at columns 10.5, 30, 55.5, and 67.5. Also inside the box will be a 1-pixel high
horizontal line at row 23.25, with 20% shading from row 22 to row 23.25, and another 1-pixel horizontal
line at row 60.

Drivers: all (gridcols and gridrows options supported only in laser and pdf)

UnForm Version 5

56

COLS

Syntax

cols n

Description

This keyword specifies the number of columns to use for the form or report. The base font is scaled to
accommodate this many columns. If present, this value will override any calculation based on the cpi
keyword.

The number of columns n can be any value up to 255.

Examples

cols 80 will set the print pitch to accommodate 80 columns per page.

Drivers: all

UnForm Version 5

57

COMPRESS

Syntax

compress

Description

If this command is present, then pdf output is compressed using the RLE compression algorithm. This is
most effective when repeated characters like spaces are present in the output, such as wide reports with
empty space between columns. Pdf output can be reduced by as much as 30%, though in some jobs
there may be little or no change. Compression requires extra processing and will therefore affect
performance.

Compression can also be turned on with the –compress command line option.

Drivers: pdf only

UnForm Version 5

58

CONST

Syntax

const ID=value

Description

The const keyword provides the capability to use a named value as a parameter to other keywords. If,
for example, you want to place a series of text values at a certain column position, but may need to
adjust the position in the future, and then set a constant ID to the column position value, then use the ID
in the column position of all the text values.

const COLPOS=22.25
text COLPOS,30,”Text line 1”
text COLPOS,31,”Text line 2”
text COLPOS,32,”Text line 3”

A given constant ID can be reused, and references to it in subsequent rule set lines will reflect the new
value. Also, a constant defined before the first rule set in the rule file will apply to any rule sets in the
file, unless the same ID is reused in any particular rule set.

NOTE: Case does make a difference. “COLPOS” and “colpos” are different constants. Take care not to
use constant names that may inadvertently cause replacements elsewhere than intended.

NOTE 2: Beware of constant names that are contained in other constant names. The longer name should
be present in the rule file first. Otherwise, the shorter name will find and replace a portion of the longer
name, resulting in unpredictable behavior. For example, if const FONT=cgtimes,8 is followed by const
FONTB=cgtimes,8,bold, any FONTB will become cgtimes,8B.

Constant names are limited to 25 characters, and constant values are limited to 75 characters. If you use
a quoted value, the outer quotes are removed before the value is substituted into the rule file commands.

Drivers: all

UnForm Version 5

59

COPIES / PCOPIES

Syntax

copies copies
pcopies copies

Description

These keywords are used to generate multiple copies of the form. The number of copies is specified by
the number copies. If the copies form is used, then the entire print job is duplicated the number of times
indicated. If the pcopies form is used, then each page is duplicated as it is printed, so the pages come
out collated.

The two versions of this keyword are mutually exclusive; the last one that is found in the rule set is the
one used. Note also the -c and -pc command line options can be used, though these keywords take
precedence, if specified.

Individual copies can be managed to any degree necessary via “if copy n” rule set logic, and also full
programming logic with the “precopy {}” and “postcopy {}” logic entry points. Use this to modify the
output device for specific copies, or to modify the content of specific copies.

To add attachments that are separate pages from the standard form pages, assign a copy to the
attachment, and add a notext keyword for that copy.

copies 2

if copy 2
notext
attach “/usr/unform/attachments/attach1.pcl”
end if

Examples

copies 2 will print the entire report twice.

pcopies 3 will print each page three times.

Drivers: All, pdf driver treats copies as pcopies

UnForm Version 5

60

CPI

Syntax

cpi characters-per-inch

Description

The cpi keyword indicates what pitch UnForm should use when printing the text of a form or report.
From this, along with the paper dimensions, UnForm can determine the columns per page and ensure
that the proper pitch is selected. As UnForm uses cpi to calculate a cols value, cpi values are rounded to
allow even character spaces. It is advisable to use cols rather than cpi.

See also lpi, cols, rows.

Examples

cpi 16.66 will set the character spacing to a common "compressed" character pitch.

Drivers: laser, pdf, zebra

UnForm Version 5

61

CROSSHAIR

Syntax

crosshair

Description

If this command is present in a rule set, then UnForm will generate a crosshair grid over the page,
making rule file development easier. Crosshair mode can also be turned on from a code block with the
crosshair$ variable.

Drivers: laser, pdf

UnForm Version 5

62

DETECT

Syntax

detect column,row,"text|!=text|~regexpr|!~regexpr"

Description

This option is used to identify a form from the data read by UnForm. If the -r option is used on the
UnForm command line, then detect keywords are ignored. Otherwise, each rule set's detects are
analyzed until a match is found. If more than one detect keyword is specified for a rule set, then the
form must match all of them. Detection occurs only at the start of the job, using the first page of data
read from the input stream.

If column and row are 0, then the whole page is scanned for the occurrence of the text. If column is 0,
then the whole line is scanned.

Column and row can contain ranges in the format from-through, such as ‘20-25’ for the columns (or
rows) 20 through 25.

The format of the quoted match text determines how the detection scan is handled. If plain text is
specified, then a literal match for text is performed. If the text begins with the prefix character ~, then a
regular expression search for regexpr is performed. If text begins with the string “!=”, or regexpr begins
with “!~”, the detect scans for NON-matches in the region specified. For example, ‘detect
1,1,”!=INVOICE” would detect any document except one that contains the text “INVOICE” at column
1, row 1.

If format 2 is used, then detect is implemented to match the regular expression specified in regexpr.

Examples

detect 0,2,"INVOICE" would search for INVOICE anywhere on line 2.

detect 10-12,4,"~../../.." would match a date format at column 10, 11, or 12, on row 4.

detect 65-66,6-8,”!~../../..” would match a date format NOT occurring at column 65 or 66, on rows 6
through 8.

Drivers: all

UnForm Version 5

63

DOWN

Syntax

down n

Description

This instructs UnForm to allocate virtual pages down the physical page, evenly spaced within the top and
bottom margins. Use this feature for multi-up printing of standard reports, or for laser labels.

UnForm will automatically scale text (to as small as 4 point), boxes, and shading. It will not scale
images, barcodes, or attachments. Also see the across command.

Down can be used inside an ‘if copy’ block, but is only compatible with non-collated copies. As a
result, copy-specific down is only available in the laser driver, and only in conjunction with the copies
command, not pcopies.

Drivers: laser, pdf

UnForm Version 5

64

DPI

Syntax

dpi 300 | 600 | 1200

Description

The dpi keyword instructs PCL printers to print at the specified dots per inch. The default dpi value is
300; however, many printers are capable of printing at 600 or 1200 dpi (or possibly even higher values).
This takes more printer memory, but results in crisper characters and lines.

Drivers: laser

UnForm Version 5

65

DUMP

See the image command.

UnForm Version 5

66

DUPLEX

Syntax

duplex mode [, left-offset] [, top-offset]

Description

Duplex printing, if supported by your printer, causes printing on both sides of the paper.

mode can be 1 for long-edge binding, or 2 for short-edge binding. A mode of 0 will print in simplex
(single-sided) mode.

left-offset and top-offset are optional values in decipoints (1/720th inch) that indicate how far to shift the
page printing from the left and top edges, respectively. Note that margins may need to be adjusted (with
the margin keyword) if offsets are used.

Drivers: laser

UnForm Version 5

67

EMAIL

Syntax

email { to | {toexpr} }, { from | {fromexpr} }, { subject | {subjectexpr} }, { msgtxt | {msgtxtexpr} }

Description

The pdf document being created will be emailed as an attachment upon completion, using the
information supplied. The name of the attached file is supplied with the “-o” argument on the UnForm
command line, or can be overridden with by setting the variable output$ in a prejob code block.

Each of the four values is positional, and each can be a literal value or an expression enclosed in curly
braces. The to value is the only required value, and must be a fully qualified email address. The from
value, if supplied, must also be a fully qualified email address. If it is not supplied, then a default
address will be used from the mailcall.ini file.

Note that the expressions are resolved as of the last copy of the last page of the job. If you need to use
data from an initial page, use a prejob code block to assign variables, and then use those variables in the
expressions.

In order to use this command, the mailcall.ini file must be edited to configure a mail server
(server=value) line, and a mailer line (mailer=mailer command). See the Email Integration chapter for
more detail about configuration, and also for information about using direct calls to the MailCall
program bundled with UnForm. Direct calls enable more control over the email processing.

The msgtxt value can contain line-feed characters to break lines. These characters can be added in
expressions as CHR(10) functions or as $0A$ hex literals, or mnemonically in text with the “\n”
character sequence.

Example

prejob{
email_to$=trim(get(1,1,50))
invoice_no$=get(60,5,6)
}

email {email_to$}, ”sales@acme.com”, {”Invoice number “+invoice_no$}, “Please pay the attached
invoice promptly.\n\nBest regards,\n\nAcme Distributing”

Drivers: pdf only

UnForm Version 5

68

ERASE, CERASE

Syntax

1. erase col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}

2. erase "text|!=text|~regexp|!~regexp", col|{numexpr}, row|{numexpr}, cols|{numexpr},
rows|{numexpr}

If cerase is used, then columns and rows are interpreted to be the opposite corner of the region, and
columns and rows are calculated by UnForm.

Description

The text from the input, in the region indicated by the column, row, columns, and rows parameters, is
erased. This keyword may be used to easily clear unwanted text from the output. The text is erased after
text expressions and prepage and precopy code blocks are executed, so the information to be erased is
available to those routines. If used, numexpr is a Business Basic expression that generates a numeric
value for the column, row, columns, or rows.

If format 2 is used, then the region is defined relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no bolded regions, or several.
Column and row are 0-based in these formats. The search for text or regexpr can be limited to a region
on the page by adding a suffix in the format ‘@left,top,right,bottom’. To use a literal “@” character in
text or regexpr, it is necessary to specify “\@”.

If the syntax “!=text” or “!~regexpr” is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Also see the erase option of the hline and vline keywords.

Examples

erase 1,5,30,4 erases text from a region from column 1, row 5, for 30 columns and 4 lines.

erase “John Smith”,0,0,10,1 erases all occurrences of “John Smith” from the page.

Driver: all

UnForm Version 5

69

FIXEDFONT

Syntax

fixedfont fontcode

The fixedfont keyword overrides the default fixedfont setting found in the [default] section of the
ufparam.txt file. If there is no fixedfont value in that file, then the fontcode 4099 (Courier) is used.

The fixed font is used for the text sent to UnForm by the application. It must be a non-proportional,
scaleable font, except in the circumstance where a non-scaleable font provides the exact pitch required
by UnForm to lay out the columns within the margins.

Drivers: laser

UnForm Version 5

70

FONT, CFONT

Syntax

1. font col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr} [,fontname] [,font fontcode]
[,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent] [,fixed | proportional]
[,color] [,rgb rrggbb] [,justification] [,upper|lower|proper]

2. font "text|!=text|~regexp|!~regexp", col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}
[,fontname] [,font fontcode] [,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent]
[,fixed | proportional] [,color] [,rgb rrggbb] [,justification] [,upper|lower|proper]

If cfont is used, then columns and rows are interpreted to be the opposite corner of the region, and
columns and rows are calculated by UnForm.

Description

The font keyword will apply font control to all input stream text in the defined region of column, row,
columns, and rows. The other parameters are all optional. If used, numexpr is a Business Basic
expression that generates a numeric value for the column, row, columns, or rows.

If format 2 is used, then font attributes are applied relative to the occurrence of text or the regular
expression regexpr. In these cases, there may be no attribute regions, or several. Column and row are 0-
based in these formats, and can be negative if required. The search for text or regexpr can be limited to a
region on the page by adding a suffix in the format ‘@left,top,right,bottom’. To use a literal “@”
character in text or regexpr, it is necessary to specify “\@”.

If the syntax “!=text” or “!~regexpr” is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

fontname can be Courier (the default), cgtimes, or univers. These fonts are standard on virtually all
PCL5 compatible printers. Alternately, font fontcode can specify a specific fontcode supported by your
printer. For example, if your printer supports True Type Arial, specify “font 16602”. Bitmap fonts (as
opposed to scaleable fonts) may be specified, but proper use depends on the form or report’s cpi value
matching that of the font. Bitmap fonts have low fontcode values, like 0 for Line Printer, or 4 for
Helvetica. fontname and fontcode can also be specified from the “ufparam.txt” file.

symset can be any symbol set supported by your printer. The default symbol set is “10U”, using the PC-
8 character set. Other examples include 19U for Windows ANSI, or 0Y for Postnet Bar Code. symset
can also be a name from the “ufparam.txt” file.

UnForm Version 5

71

size is a numerical value that specifies the point size of a proportionally spaced font or the pitch size of a
fixed font. Values range from about 4 to 999.75. The default is based on the rows per page. Note that
for proportional fonts, the larger the number, the larger the size printed. Fixed fonts are the opposite.

The words bold, italic, underline, and light will apply the indicated attribute(s) to the text.

percent indicates the percent gray to print the text, from 0 (white) to 100 (black). The default is black.

Any font code below 4100 is presumed to be fixed (mono-spaced), and codes 4100 and up are presumed
to be proportional. To override this assumption, specify one of the words fixed or proportional.

Color can be specified as white, cyan, magenta, yellow, blue, green, red, or black, or you can name a
RGB value as a 6-character hex string with rgb rrggbb, where rr is red (00-FF), gg is green (00-FF), and
bb is blue (00-FF).

justification can be one of the following words: left, center, right, or decimal. UnForm will remove
leading and trailing spaces from the text and justify it within the column specification. Decimal
justification will use a “.” character unless a “decimal=character” line is placed in the ufparam.txt file
under the [defaults] section.

The mutually exclusive upper, lower, and proper options will convert the text in the fonted region to all
UPPER, lower, or Proper case. Proper case capitalizes the initial letter of each word, or word segment
preceded by a non-letter or non-digit character.

Note: If you use identical font commands for two adjacent or overlapping regions, UnForm will combine
the regions. For proportionally spaced fonts, the result will be misaligned columns. To avoid this, you
can add non-operational options, like “black” or “shade 100” to alternating commands, so UnForm will
not treat them as identical.

Drivers: all, but note the following:

pdf: maps pcl font names and numbers to courier, helvetica, or times. Symbol set 9J is the default and
the only symbol set supported.

zebra: symset is not supported. size is limited to scalability of the font in the printer’s firmware, typically
integer multiples of the base font size in dots. Color is not supported, nor is justification. Shading can
be either 100% (black) or 0% (white). Fontnames are not mapped. Specify fonts instead as fontcodes,
which must be internal font identifiers, such as a-f, 0-9. See the ZPL documentation for font codes.

Examples

font 10,20,29,50,cgtimes,12,center will change the text in the region starting at column 10, row 20, for
29 columns and 50 rows, to 12-point cgtimes. The text will be centered within the 29 column width.

UnForm Version 5

72

cfont 1,20,132,52,courier,16.67 will change the font of the region specified to 16.67 pitch courier.
Since courier is a mono-spaced font, the number 16.67 is interpreted as a pitch (characters-per-inch)
rather than a point size.

cfont {pos(“Description”=text$[22]},23,{pos(“Units”=text$[22])-1},60,univers,10 will calculate the
starting and ending column based upon where “Description” and “Units” occur in line 22, and change
the font for that column range, for rows 23 through 60.

UnForm Version 5

73

GS

Syntax

gs [yes | on]

Description

The gs command can be used to control graphical shading. The command by itself or followed by the
words “yes” or “on” will turn on graphical shading. Any other parameter value will turn graphical
shading off, resulting in the highly efficient, though not as finely rendered, internal laser shade
commands. The –gs command line option can be used to specify graphical shading by default.

Graphical shading generates far more output than internal laser shading, so should not be used unless
there is a high-bandwidth connection to the laser printer. Due to the sizes of strings created when this
mode is turned on, it is likely to generate string size errors in environments using a ProvideX runtime
prior to revision 5.0. Bundled environments do not have this limitation.

Graphical shading only applies to the shade command and the shade option of the box command. It does
not have any effect on shaded text, which will continue to be rendered by the printer font engine.

Drivers: laser only

UnForm Version 5

74

HLINE

Syntax

hline "text" [,erase] [,extend] [,thickness]

Description

Any horizontal occurrence of the text indicated, of at least the length indicated, will be replaced with a
horizontal line. The text must be composed of a single character repeated any number of times. There
can be multiple hline keywords in a rule set, if needed. For example, if both dashes (-) and equal signs
(=) are used for lines in a form, both can be specified in separate hline keywords.

This keyword is useful if the application already produces boxes and lines with standard characters.
Also see the vline keyword.

As with all box drawing, UnForm will consider line endpoints to be at the center position of a character,
which may impact how lines intersect. Lines are drawn one dot (1/300 inch) thick.

If the erase option is used, then no line is drawn. Instead, the horizontal text values are simply removed
from the output.

If the extend option is specified, the lines are extended ½ character left and right. The thickness
parameter specifies a pixel width to draw.

The search for text can be limited to a region on the page by adding a suffix in the format
‘@left,top,right,bottom’. To use a literal “@” character in text, it is necessary to specify “\@”.

Examples

hline "---" will search the report for three or more horizontal dashes. All such dashes found will be
replaced with a horizontal line.

Drivers: all

UnForm Version 5

75

IF COPY … END IF

Syntax

if copy n,n,…
…
end if

Description

The keyword "if copy" will cause any keywords to apply only to the copy or copies specified. The
feature is used to manipulate the content of various copies. For example, you may wish to add a text
message on a specific copy, or suppress a region of text with a white shade. When combined with
attach and notext keywords, attachments can be added without the printing of text.

end if indicates that conditional processing of the rule set is done, and keywords apply to all copies
again. The end if keyword may also be entered as endif or fi.

Examples

if copy 2 will process keywords following this line, until an endif keyword is found, and apply keywords
only to copy 2.

if copy 3,4,6 will apply keywords to the three copies identified.

Drivers: all

UnForm Version 5

76

IF DRIVER … END IF

Syntax

if driver n
…
end if

Description

The command "if driver" will cause any commands to apply only when the rule set is evaluated under
the driver n. The driver is specified with the command line option “-p”, and defaults to “laser”.
end if indicates that conditional processing of the rule set is done, and keywords apply to all copies
again. The end if keyword may also be entered as endif or fi.

Example

This example will use the image “pdflogo.pdf” when “-p pdf” is used on the command line.

if driver pdf
image 1.5,2,15,6,“pdflogo.pdf”
end if

Drivers: all

UnForm Version 5

77

IMAGE

Syntax

image col|{numexpr}, row|{numexpr} [, cols|{numexpr}, rows|{numexpr}], {"file" | {expr}}

Description

The image command is used to print an image file specified by file to each page when the output
position is the column and row indicated. This option is typically used to add graphic logos to forms.
The column and row can be specified with decimal fractions to 1/100 character. The image file must be
in the native format for the driver being used: pcl raster for laser, pdf for pdf, zpl for zebra.

If the row is 0 or 255, then UnForm will apply no positioning to the output. In this case, the positioning
desired should be present in the file. UnForm will scan the file, looking for image information and
possibly position data. Just that information will be sent to the output device. If the row is greater than
0 and less than 255, then UnForm will ignore any positioning that might be contained in the image file,
and instead place the upper left corner of the image where specified.

Note: The optional cols and rows parameters cause the image to be scaled to the rectangular region
specified, and are only used by the pdf driver.

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows.

If expr is used, then it should be a valid Business Basic expression that resolves to a string value, which
will be interpreted as the file name as each copy prints.

An easy way to generate a PCL image for UnForm is to set up a HP LaserJet III or higher printer on a
Windows workstation, and specify the “port” to be a file. You don’t need a physical printer - just the
Windows printer driver. Then use a graphics or word processing tool to display the image and print to
that printer. Make sure that the properties are set to raster graphics and not vector graphics. Windows
will prompt for a file name, and produce that file as a PCL raster image that UnForm can use.

Another alternative is to use the publisher’s web site image conversion utility, available from the
UnForm page at http://synergetic-data.com. You can upload an image file and receive back images in
PCL, RTL, or PDF format.

Note that for color laser printers, UnForm requires a HP RTL (raster transfer language) format file.
Color LaserJet printer drivers for Windows do not produce RTL images. Image Alchemy, from
Handmade Software Inc. (http://www.handmadesw.com), is recommended to create RTL files, or you
can use the image conversion utility mentioned above.

UnForm Version 5

78

To create an image file for the pdf driver, use either Adobe Acrobat Distiller or Image Alchemy. If you
use Distiller, be sure to set the job options to turn OFF the "Optimize PDF" flag, and ON the ASCII flag.
UnForm's pdf parser relies on a standard (old) pdf file format, which the optimization does not produce.

Examples

image 0,255,"/usr/unform/logo.pcl" will place the named file on each page. The file should contain
the desired cursor positioning.

image .5,1.25,”/usr/unform/logo.pcl” will place the raster image contained in the named file at column
.5, row 1.25.

image {icol},{irow},{icols},{irows},{logo$} will place an image file specified in the variable logo$ at
the position specified by the variables icol and irow. If used in a pdf driver, the variables icols and irows
would specify the image size in columns and rows. All the variables would have to be created in a code
block, such as prejob{} or prepage{}.

Drivers: all. Laser requires pcl raster format, pdf driver requires pdf format, zebra requires zpl format.

UnForm Version 5

79

ITALIC

See the bold keyword.

UnForm Version 5

80

LANDSCAPE, RLANDSCAPE

Syntax

landscape or rlandscape

Description

This keyword will ensure that UnForm produces output in landscape (horizontal) orientation. The
default orientation is portrait (vertical), unless UnForm encounters a PCL control code setting landscape
mode (hex 1B266C314F) on the first page. Use of this keyword will force landscape mode regardless of
PCL control codes found in the input.

The rlandscape command will turn on reverse landscape mode.

Also see the portrait keyword.

Drivers: laser, pdf (rlandscape is laser only)

UnForm Version 5

81

LIGHT

See the bold keyword.

UnForm Version 5

82

LPI

Syntax

lpi line-height

Description

The lpi keyword indicates the vertical line height UnForm should use when printing the text of a form or
report. From this, along with the paper dimensions, UnForm can determine the rows per page and
ensure that the proper vertical placement is selected for each line. To save time and effort, use the rows
keyword and UnForm will calculate the lpi.

See also cpi, cols, rows.

Examples

lpi 8 sets 8 lines per inch.

lpi 6.6 uses a common laser printer value based on 66 lines in a 10 inch printable page length on letter
paper.

Drivers: all

UnForm Version 5

83

MACRO

Syntax

macro n

Description

This keyword will cause UnForm to invoke macro number n in the LaserJet printer. This macro must be
defined and downloaded to the printer as a permanent macro. This keyword could be used to call a
macro for a company letterhead, for example. See section on creating macros later in this
documentation.

Drivers: laser

UnForm Version 5

84

MACROS

Syntax

macros on|off

Description

This keyword causes UnForm to invoke (or not invoke) macros for fixed raster elements (box, shade,
text, image, and attach). Macro usage can significantly reduce the data transfer requirements to the
printer, most noticeably on a serial or parallel connection with many pages of similar output. The printer
must have enough memory to store and execute the macros.

The default macros setting is "off"; the "-macros" command line option establishes the default macros
setting to "on". This keyword overrides either default for this rule set.

Macros are numbered from 0 to 32767. UnForm will start macro definitions at 32000 unless the
"[defaults]" section, "macrono" field is set to a different value in the ufparam.txc file. If a site uses
macros and finds a conflict with this number, then the value should be changed to allow an available
contiguous range for UnForm.

Drivers: laser

UnForm Version 5

85

MARGIN

Syntax

margin[s] left, right, top, bottom

Description

The margin keyword is used to increase the margins used by UnForm when calculating row and column
positions. Normally, UnForm will use a 0.25 inch margin on all four sides, based on the paper size in
use. If you need to increase any margin, you can specify the dot offsets desired. Note that the values for
left, right, top, and bottom are entered in dots, which default to 300 dpi, but can be modified by the dpi
keyword.

For example, margin 75,75,0,150 (at 300 dpi) would set left and right margins to 0.5 inches, the top
margin would remain at 0.25 inches, and the bottom margin would be 0.75 inches.

Drivers: laser, pdf

UnForm Version 5

86

MERGE

Syntax

merge “ruleset” [, “rulefile”]

Description

This command will insert the contents of the ruleset into the currently parsed rule set. If the rulefile
parameter isn’t supplied, the current rule file is used. Otherwise, rulefile is opened in the UnForm
directory or by full path, if specified, and is scanned for ruleset. This command can be used to
incorporate common elements into many rule set formats. For example, a name and address heading
could be placed into a rule set called “address_header”, and various forms could use the command
merge “address_header” to include the commands it contains.

Note that if no rulefile is specified, then the rule file specified for the job is used for the merge, even if
the merge is nested within another merge that specifies another rule file.

Unlike other UnForm commands, merge works within a code block, such as precopy or prepage.

Drivers: laser, pdf, zebra

UnForm Version 5

87

MICR

Syntax

micr col|{numexpr}, row|{numexpr}, account, check

Description

Prints MICR font at the col and row specified, for laser check printing. If used, numexpr is a Business
Basic expression that generates a numeric value for the column and row. The account number must be
in the format :123456789:xxx", where the colons surround the 9-digit bank number, and the balance of
the account number is terminated by a quote. Quotes can be identified in a text literal with <34>. A
space after the bank number and terminating colon is optional. When the MICR code is generated,
colons become "transit symbols", and quotes become "on us" symbols. Account numbers can contain
spaces or dashes, as well as digits. The check number can be up to 12 digits long. This keyword
supports 8-inch checks only, not the smaller 6-inch variety, which requires a different format for the
MICR.

The fixed bank number is typically hard-coded, but can be an expression if enclosed in braces {}. The
check number will generally be an expression, which can use get() to retrieve the number from the
application print, or can be a variable defined in a prepage{} block.

Example

micr 6,42.25,":123456789:9999-1234<34>",{trim(get(65,5,6))} would print a MICR encoded line with
the indicated bank and account number, and a check number derived from the input stream data printed
at column 65, row 5, for 6 characters.

Drivers: laser

UnForm Version 5

88

MOVE, CMOVE

Syntax

1. move col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, newcol|{numexpr},
newrow|{numexpr} [,retain]

2. move "text|!=text|~regexp|!~regexp", col|{numexpr}, row|{numexpr}, cols|{numexpr},
rows|{numexpr}, movecols|{numexpr}, moverows|{numexpr} [,retain]

Description

cmove causes cols and rows to be interpreted as the opposite corner of the region to be moved.

The move keyword moves a block of text to a new location on the page. Format 1 moves the region
indicated by col, row, cols, and rows so the new upper left point is at newcol, newrow. Format 2
searches for occurrences of text or the regular expression regexpr, respectively, and use each location
found as a point from which col and row are measured (0-based movement). The rectangular region
specified is then moved movecols left or right, and moverows up or down. The search for text or regexpr
can be limited to a region on the page by adding a suffix in the format ‘@left,top,right,bottom’. To use a
literal “@” character in text or regexpr, it is necessary to specify “\@”.

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows, and also the “new” column and row (syntax 1) and the “move” columns and rows
(syntax 2).

If the syntax “!=text” or “!~regexpr” is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

The optional retain parameter will cause UnForm to leave the text in its original location, in effect
copying the text rather than moving it.

The default timing of the move command is after relative enhancements from various other commands
occur. The result is that relative enhancements are made based upon the original text positions, not the
‘move to’ positions. This is intuitively wrong, but for compatibility purposes, it has remained the default
behavior. It is possible to adjust the timing of the move command to occur before relative enhancements
are calculated by changing a parameter in the ufparam.txt file. (If you have a ufparam.txc file, adjust it
rather than ufparam.txt.) Under the [defaults] section, define this line: shiftfirst=1.

Examples

move 5,10,40,4,20,20 moves text at column 5, row 10, 40 columns wide and 4 rows high, to the region
20,20,40,4.

UnForm Version 5

89

move "Date",0,0,4,1,-4,0 moves all occurrences of the word Date left by 4 columns.

Drivers: laser, pdf

UnForm Version 5

90

NOTEXT

Syntax

notext

Description

This keyword specifies that no report text should be printed. Typically, this would be placed inside an
“if copy n” block in order to add an attachment and prevent overwriting of the form text.

Example

if copy 2
 attach “/usr/unform/attachments/attach1.pcl”
 notext
end if

Drivers: all

UnForm Version 5

91

OUTLINE

Syntax

outline [level]

Description

The outline keyword turns on the production of PDF outlines (also called bookmarks) and the automatic
display of the outline when the document is displayed in an Adobe Acrobat Reader. The content of the
outline is set page by page, by setting the variable “outline$” in a precopy or prepage code block. Multi-
level outlines can be specified by delimiting the levels with vertical bar (|) characters in the outline$
string.

If level is supplied, it must be an integer greater than zero. This indicates the highest outline level that
will be initially opened when Acrobat displays the document. The default behavior is to have all levels
open, but with exceptionally large reports, it may be desirable to have just the first one or two levels
initially opened.

Drivers: pdf only

UnForm Version 5

92

OUTPUT

Syntax

1. output “output-device”

2. output {expression}

Description

The output keyword is used to modify the output device of any copy. Normally, all copies are printed to
the output device specified in the “-o” option, or to standard out on UNIX. However, it is sometimes
desirable to have copies of forms sent to different devices, such as a different laser printer, or a fax
product.

The output-device can be a printer device, a pipe (starting with |), a filename, or a printer alias defined in
the config.unf file. Beware of pipes or redirects on Unix, noting that any shell-aware characters, such as
ampersands (&), must be quoted.

If the second format is used, expression is evaluated after each page of input has been loaded and the
prepage subroutine has been executed. The expression can be any valid Business Basic statement that
would appear on the right side of a LET assignment and produce a string data type result, which must be
a valid output device as noted above. See the precopy keyword for more information about
programming expressions.

Example

if copy 2
output “|lp -daccounting -s”
end if

The above example would send the second copy of the form to the printer named “accounting”.

Drivers: laser, pdf only for a job wide specification outside of “if copy” blocks, used if no –o command
line option is specified. pdf output cannot be changed during printing.

UnForm Version 5

93

PAGE

Syntax

1. page rows

2. page cols, rows

Description

Format 1 specifies an input page length of no more than rows lines. If a form-feed character is
encountered first, then the page is considered complete also. This keyword is useful if the application
creates a form with line-feeds rather than form-feeds.

If format 2 is used, then each page worth of rows is divided into column groups of cols wide and treated
as virtual pages from left to right. For example, if an application prints mailing labels as 4-up labels
each 30 columns wide and 6 rows deep, then the command rows 30,6 would produce 4 pages, each 6
rows. This can be useful to convert n-up continuous label print jobs into laser label jobs using the
across and down commands.

If no rows or lpi keyword is specified, then n is assumed to be the rows per page.

Examples

page 42 will consider each 42 lines to be a full page.

page 42
rows 66 would mean 42 lines input and 66 lines output.

Drivers: all

UnForm Version 5

94

PAPER

Syntax

paper size

Description

The paper keyword overrides the “-paper” command line option. It tells UnForm the paper size to
instruct the printer to use, and also defines the page size from which UnForm calculates column and row
widths.

For PCL (LaserJet) printers, size can be any of the following:

Value Size
Letter 8.5 x 11 inches
Legal 8.5 x 14 inches
Ledger 11 x 17 inches
Executive 7.25 x 10.5 inches
A4 210 x 297 mm
A3 297 x 420 mm

For Zebra printers, indicated by the “-p zebran” command line option, the size is given as a single word
made up of the width in inches, a letter “x”, and the height in inches. For example, a 3-inch by 5.25-inch
label would be specified by paper 3x5.25.

Note the actual definitions for laser and pdf paper sizes, including a special ‘custom’ size, are stored in
the ufparam.txt (or ufparam.txc) file under the [paper] section, so they can be modified to match special
printer environments. If you modify them, be sure to create a ufparam.txc file to avoid losing your
changes during an update.

Drivers: all

UnForm Version 5

95

PORTRAIT, RPORTRAIT

Syntax

portrait or rportrait

Description

This keyword ensures that UnForm will print pages oriented in portrait (vertical) fashion. If, while
analyzing the report text, UnForm detects a PCL control sequence to turn on landscape mode, then
landscape will be the default orientation. Use this keyword to guarantee that the orientation will be
vertical.

The rportrait command turns on reverse portrait mode.

See also the landscape keyword.

Drivers: laser, pdf (rportrait is laser only)

UnForm Version 5

96

PRECOPY, PREDEVICE, PREJOB, PREPAGE

POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE

Syntax

precopy | postcopy | prejob | postjob | prepage | postpage {
code block
}

Note: the opening brace “{“ needs to be on the same line as the keyword. The closing brace may
follow the last statement, or be on the line below the last statement.

Description

These keywords are used to add Business Basic processing code to the form or report. They represent
six different subroutines that UnForm executes at specific points during processing. The code block can
be an arbitrary number of Business Basic statements; the total number of statements in all code blocks
can be about 6,000 (or less, depending on program size limits imposed by the run-time environment).

• prejob executes after the rule set has been read, and after the first page is read, but before any

printing takes place. Use this code to open files or databases, prepare SQL statements or string
templates, create user-defined functions, and initialize job variables.

• postjob executes after the last page has been printed. Use this to close out your logic, such as adding
totals to log reports. There is no need to close files, since UnForm will RELEASE Business Basic.

• predevice executes just after a device has been opened. With the laser driver, the output device can
be changed with the output command or by modifying the output$ variable in a prepage or precopy
codeblock. Whenever a new device is opened for any given copy, this code block is executed. The
programmer can then store information from the page that causes the device to be opened, such as a
customer code or fax information.

• postdevice executes just after the output device has been closed. Use this code block to perform
processing with prior output device, once UnForm has closed the device. For example, if the output
device changed when the customer number changed, then one or more pages for a given customer
would be in the output file and could be sent as a group to a fax product.

• prepage executes after each page is read, but before any printing takes place. Use this to gather data
associated with any page, or to modify the content of the text if you need such modifications to apply
to all copies.

• postpage executes after the last copy of each page has printed.

• precopy executes before each copy is printed. Use this to modify copy text content, to skip specific
copies, or to modify a copy’s output device.

UnForm Version 5

97

• postcopy executes after each copy is printed.

Any valid Business Basic programming code can be entered, including I/O logic, loops, variable
assignments, and more. Program to your heart’s content. UnForm will add extensive error handling
code within your code, and report syntax errors to the error log file or a trailer page. The code is inserted
into the module ufmain.xx at run-time. Note that BBXPROGRESSION/4 run-time environments are
limited to 64K program sizes, so the amount of code added needs to be limited to 64K less the base size
of ufmain.bb, if you are running UnForm under a BBXPROGRESSION/4 run-time.

You may use the following variables and functions in your code block:

• text$[all] is a one-dimensional array of the text for the page. For example, text$[2] is the second

line of text on the page.

• copy contains the current copy number. Generally you shouldn’t modify this value. If you need to
skip printing of a copy, use the skip variable instead.

• copies is the number of copies. You can change this value to dynamically adjust the number of
copies. If the number you specify is higher than the number specified by the rule set, then that
highest defined copy’s text and enhancements will be repeated until your specified copies are
complete. This value is reset each page, so you can’t set it in the prejob routine.

• skip may be set to a non-zero value in order to skip printing of any copy. Use this in a precopy
routine.

• output$ can be changed for any copy. This is the device that the copy should print to. If it changes
from one page to another, UnForm will close the prior output channel and reopen the new one. This
can be used to send a copy to a different printer, or to a fax device. You can set the value to any
printer alias known to UnForm (in the unform.cnf file), any file, or a pipe, such as “|fx -n
“+faxnum$. Note that in the pdf driver (and the associated win and winpvw drivers), output$ can
only be defined in the prejob code block. When using a Unix redirect or pipe, be sure to add quote
characters (CHR(34)) around any data that might contain ampersands (&) or other shell-aware
characters.

• bin$, tray$, duplex$, paper$, cols$, rows$, across$, down$, and margin$ can be set to values
described in the bin, tray, duplex, paper, cols, rows, across, down, and margin commands. Note that
as string variables, they must all be set to string values, but may be interpreted numerically. For
example, to adjust the number of columns for a given page to 132, set cols$=”132”. These variables
are only available in prepage and precopy code blocks.

• orientation$ can be set to “landscape”, “portrait”, “rlandscape”, or “rportrait”. It can also be set to a
literal digit: “0”=portrait, “1”=landscape, “2”=reverse portrait or “3”=reverse landscape.

• crosshair$ can be set to “Y” or “y” to enable crosshair grid printing over the output (laser and pdf
output only).

• outline$ can be set to an outline string used when the PDF outline feature is turned on, by use of the
outline command. Multiple levels of outlines can be defined by delimiting levels with vertical bars,
such as outline$=”Customer type “+get(1,6,4)+”|Page “+str(pagenum). This example would produce

UnForm Version 5

98

a 2-level outline structure with a customer type code being the top level, and page numbers as child
levels.

• pagenum stores the current page number and should not be changed.

• driver$ stores the current driver as “laser”, “pdf”, or “zebra”. The win and winpvw drivers are
considered variants of pdf, and driver$ is set to “pdf” when used. This variable should not be
changed.

• mid(arg1$,arg2,arg3) is a function that safely returns a substring without generating an error 47 if
the value in arg1$ isn’t long enough to accommodate position arg2 and length arg3.

• get(col,row,cols) is a function that safely returns text from the text$[all] array, without substring or
array out-of-bounds errors.

• mget(col,row,cols,rows,lf$,trim$) returns multiple lines of text into a single string, optionally with a
line-feed delimiter and/or trimmed of spaces. This function is useful in conjunction with multi-line
functionality of the text command. The lf$ argument can be set to “Y” or “y” to add a line-feed
character between each line; likewise, the trim$ argument can be set to “Y” or “y” to cause each line
to be trimmed before returned.

• set(col,row,cols,value$) is a function that places value$ in the text$[all] array at the place indicated.
It returns value$.

• cut(col,row,cols,value$) combines the get() and set() functions. It returns the value text at position
col, row, for cols columns, after setting the specified position to value$. If value$ is null (“”) or
spaces, cut effectively erases the text. This is useful for moving data in text commands, such as text
10,60,{cut(10,59,10,””)}, which would cut text from 10,59 and move it to 10,60.

• mcut(col,row,cols,rows,value$,lf$,trim$) returns multiple lines of text, optionally with line-feed
delimiters and/or trimmed of spaces. The lf$ argument can be set to “Y” or “y” to add a line-feed
character between each line; likewise, the trim$ argument can be set to “Y” or “y” to cause each line
to be trimmed before returned. In addition, mcut() assigns each line in the cut region to value$. Use
null (“”) or spaces to erase the source text.

• err=next may be used for any err=label option in any function or statement, in order to force
UnForm’s error trapping to ignore an error. You may, of course, name your own err=label if desired.

• trim(expression) trims spaces from the left and right side of a text expression.

• upper(expression) converts text to UPPERCASE.

• lower(expression) converts text to lowercase.

• proper(expression) converts text to Proper Case.

• cnum(expression) returns a number from a text string, after stripping formatting characters such as
commas and dollar signs. Parentheses and minus signs indicate negative numbers.

• exec(expression) may be used to execute barcode, bold, box, erase, font, image, italic, light, micr,
move, shade, text, and underline keywords from within the code block. expression must be a single
string value that contains the text of such a command, such as exec(“box
“+str(col)+”,”+str(row)+”,30,2.5”). You can use the exec() function to add enhancements to a

UnForm Version 5

99

print job within the code block. The function can be used in either prepage{} or precopy{} blocks.
Remember that some commands need quoted parameters to work properly. For example, if you
exec() a text command, be sure to add quote characters around the text to be printed, using one of
three methods: double any internal quotes, use an expression that uses 22 for quotes, or use an
expression that uses CHR(34) for quotes. For example, exec(“text
10,10,”+chr(34)+message$+chr(34)+”,cgtimes,10”), or exec(“text
“+str(col)+”,”+str(row)+”,””Quoted Text””,univers,12”).

When using variables and line labels, you should avoid using any values that begin with “UF”. UnForm
reserves all such variables and labels for its use. You may use a backslash (\) at the end of a line to
continue the statement on the next line. Lines prefixed with “#” are not added to the code.

Two data elements from the command line can be referenced in code blocks using the stbl() function
(use gbl() in ProvideX environments). The –s sub-file option will generate stbl values as “@name”. For
example, if the substitution file contains the line ‘company=Smith Produce’, then stbl(“@company”)
will return “Smith Produce”. Further, the –prm command line option will directly create stbl values.

Note that the merge command, while not executable code, is honored within a code block. The merged
data must be valid code block syntax.

For more details about programming code blocks, see the Programming Fundamentals chapter.

Example

This example shows how to use various routines to make copy 2 of a form be a conditionally faxed
invoice, which is logged to another printer for verification.

prejob {
cust=unt; open(cust)”custfile.dat”
dim cust$:”id:c(5),name:c(30),*:c(100),faxnum:c(12)”
}

prepage {
if cvs(get(10,2,30),3)=”Acme Systems” comp$=”01” else comp$=”02”
dim cust$:fattr(cust$)
readrecord (cust,key=comp$+get(10,5,6),err=next)cust$
}

precopy {
if copy=2 if cvs(cust.faxnum$,3)>”” output$=”|fx -n “+ \
cust.faxnum$, log$=log$+cust.name$+$0d0a$ else skip=1
}

postjob {

UnForm Version 5

100

if log$=”” goto endjob
log=unt; open(log)”P1”
print (log)”Fax Verification Log”
print (log)log$,’ff’,
close(log)
endjob:
}

Drivers: all, but predevice and postdevice are only supported by laser and pdf drivers.

UnForm Version 5

101

ROWS

Syntax

rows n

Description

This keyword specifies the number of output rows to use for the form or report. The placement of each
line is calculated to accommodate this many rows within the printable area of the paper. For example,
with letter paper, the printable area is about 10.5 inches; rows 66 will cause each line to be 10.5/66
inches high. If present, this value will override any calculation based on the lpi keyword.

The number of rows (n) can be any value up to 255. It will default to 66 if no rows, lpi, or page
keywords are present. If no page keyword is present then UnForm will assume 66 input rows. If a
document is created without form feeds, then the page keyword must be used.

Examples

rows 80 will set the line height to accommodate 80 rows per page.

Drivers: all

UnForm Version 5

102

SHADE, CSHADE

Syntax

1. shade col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, percent [,extend] [,color]
[,rgb rrggbb]

2. shade col|{numexpr}, row|{numexpr}, cols|{numexpr}, rows|{numexpr}, percent, skip, times [,extend]
[,color] [,rgb rrggbb]

3. shade "text|!=text|~regexp|!~regexp", col|{numexpr}, row|{numexpr}, cols|{numexpr},
rows|{numexpr}, percent [,extend] [,color] [,rgb rrggbb]

If cshade is used, then cols and rows are interpreted to be the opposite corner of the shade region, and
columns and rows are calculated by UnForm.

Description

The region indicated by col, row, cols, and rows will be shaded, using the percent as the percent-gray
value. The region parameters can be specified as decimal values to 1/100 character. The region is
based on the full character cell, starting at the upper left corner of the cell. This differs from the box
keyword, which measures from the center point of a cell. The percent can be any value from 0 to 100,
where 0 is white (useful for erasing regions), and 100 is black. The default shade value is 5% (which
renders as 10% in PCL5 devices). PCL5 printers actually support only eight levels of gray, generally:
2%, 10%, 20%, 35%, 55%, 80%, 99%, and 100%. Given values less than these are rounded up to the
next supported value.

For compatibility with Version 1 rule files, Version 2 and above will convert shade values of 1, 2, 3, and
4 to 2%, 20%, 55%, and 100%, respectively.

If used, numexpr is a Business Basic expression that generates a numeric value for the column, row,
columns, or rows.

Syntax 2 provides for repeating regions to be easily specified. The skip parameter is a number indicating
the number of blank lines that follow the shade region. The times parameter is the number of times to
repeat the shade/blank pattern. UnForm will generate multiple rows of shading until either the number
of repetitions is met or the end of the page is found. For example, shade 1,21,80,2,1,2,8 would produce
8 shaded regions, each 80 columns by 2 rows with shade grade level 1. Two blank lines would separate
the shade regions. These two parameters are ignored if the first parameter is a text string, as in formats 3
and 4.

If syntax 3 is used, then the shading is drawn relative to any occurrence of the text, or of text that
matches the regular expression regexpr. In these cases, there may be no shaded regions, or several.
Column and row are 0-based, in these formats, and can be negative if required. The search for text or

UnForm Version 5

103

regexpr can be limited to a region on the page by adding a suffix in the format ‘@left,top,right,bottom’.
To use a literal “@” character in text or regexpr, it is necessary to specify “\@”.

If the syntax “!=text” or “!~regexpr” is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

All formats support the extend option. This simply expands the shade region by ½ character in all
directions, making it easy to fill in a box that is placed at the mid-point of each character position
surrounding the shade region.

Note that the box keyword also supports shading, and may be more convenient to use if an outlined
shaded region is desired.

Color can be specified as white, cyan, magenta, yellow, blue, green, red, or black, or you can name a
RGB value as a 6-character hex string with rgb rrggbb, where rr is red (00-FF), gg is green (00-FF), and
bb is blue (00-FF).

You can improve the look of shade regions on laser printers, especially at medium shade levels and 600
or higher dpi settings, by using the gs command.

Examples

shade 41,3,40,6,2 will fill the indicated region with a medium (20%) shade.

shade 10.5,3.01,40,4.98,25 will shade the indicated region with 25% gray.

shade "No. Item/Desc",0,0,79,1,10,extend will shade from the position the noted text is found, for 79
columns and 1 line. The shaded region will then be extended ½ column and row in each direction. 10%
gray will be used.

shade 1,14,80,2,1,2,12 will produce a repeated pattern of 80 column wide, 2 lines high, light shading,
followed by two blank lines. The pattern will be repeated 12 times, occupying a total of 48 lines.

Drivers: all, zebra only supports 0% or 100%.

UnForm Version 5

104

SHIFT

Syntax

shift n

Description

The text in the report is shifted n characters to the right (or left, if n is negative). If a report starts in
column 1, but doesn't extend all the way to the right edge of the page, it is possible to shift the data to the
right to allow for box drawing around text elements on the left margin.

The placement of relative shading, drawing, and attributes is determined before any shift.

See vshift also, for shifting text vertically.

Examples

shift 1 will shift all text one character to the right.

Drivers: all

UnForm Version 5

105

SYMSET

Syntax

symset “symbolset”

Description

The symset keyword overrides the default symbol set setting found in the [defaults] section of the
ufparam.txt file. If there is no [defaults] section, then the symbol set 10U is used. Symbol set values for
the LaserJet are always integers followed by an uppercase letter. Be sure to quote the symbolset value to
maintain the uppercase letter (unquoted values in rule sets get converted to lowercase by UnForm’s rule
file parser).

Symbol sets are used to display specific international character sets or symbols. See your LaserJet
documentation for symbol set codes supported by your printer.

If you plan to use the pdf driver in addition to the laser driver, you should specify your symbol sets as 9J
if you intend to use special characters in the ASCII 128 to 255 ranges.

Drivers: laser

UnForm Version 5

106

TEXT

Syntax

1. text col|{numexpr}, row|{numexpr}, "text” | @name | $name | {expression} [,fontname] [,font
fontcode] [,symset symset] [,size] [,bold] [,italic] [,underline] [,light] [,shade percent] [,rotate 90 | 180 |
270][,fixed | proportional | prop] [,color] [,rgb rrggbb] [,justification, cols ncols] [,wrap] [,fit] [,spacing
spacing]

2. text "text|!=text|~regexp|!~regexp", col|{numexpr}, row|{numexpr}, { "text” | @name | $name |
{expression} } [,fontname] [,font fontcode] [,symset symset] [,size] [,bold] [,italic] [,underline] [,light]
[,shade percent] [,rotate 90 | 180 | 270][,fixed | proportional | prop] [,color] [,rgb rrggbb] [,justification]
[,cols ncols], [eraseoffset cols, erasecols cols] [,wrap] [,fit] [,spacing spacing]

Description

The text indicated in quotes will be printed at the column and row indicated by col and row. The column
and row can be specified to 1/100 character. The position specified becomes the baseline left edge for
the first character. If used, numexpr is a Business Basic expression that generates a numeric value for the
column, row, columns, or rows.

If text begins with "@", such as @company, then the substitution file is searched. In the example
above, if a line company=ABC Company was found, the text "ABC Company" is used. The
substitution file defaults to "subst", but may be specified on the command line with the "-s" option.

If text begins with "$", then the operating system environment is searched for the indicated variable and
its value is used. For example, $USER would use the value stored in the environment variable "USER".

If text should be a literal value that starts with @ or $, then use \@ or \$, respectively.

If braces surround text, then it is taken to be an expression to be evaluated after each page of input has
been loaded and the prepage subroutine has been executed. The expression can be any valid Business
Basic statement that would appear on the right side of a LET assignment and produce a string data type
result. Some UnForm supplied functions and data can be useful, such as TEXT$[], which contains the
text of the page in an array, and GET(col,row,length), a function that returns data from the TEXT$ array.
For example, {“Copy 2, generated on “+date(0)} would generate text similar to this: “Copy 2, generated
on 03/31/99”. See the precopy keyword for more information about programming expressions.

If text contains linefeed characters (CHR(10) or $0A$), or the mnemonic character string “\n”, then
UnForm will break the text into multiple lines and space them according to the spacing value. For
example, if the point size is 12, and spacing is set to 1.5, then line spacing is set to 18 points. The
default spacing is calculated from the number of rows per page, so multi-line text data will match the
vertical placement of single line text data.

UnForm Version 5

107

The fit option will scan text for line breaks and decrease the size value as necessary to ensure that all
lines will fit in the number of specified ncols. The smallest point size that will be used is 4, and the
largest pitch that will be used is 30.

The wrap option will scan text and insert line breaks as needed to ensure no line at the specified size will
exceed the specified ncols. If no spaces exist in word that exceeds the line width, UnForm will print the
word in its entirety, exceeding the allocated space.

The fit and wrap options are mutually exclusive, and in either case, if no ncols value is specified with the
cols option, then ncols defaults to the page width in columns minus column.

fontname can be Courier (the default), CGtimes, or Univers. These fonts are standard on virtually all
PCL5 compatible printers. Alternately, a specific fontcode supported by your printer can be specified by
its font number. For example, if your printer supports True Type Arial, specify “font 16602”. Bitmap
fonts (as opposed to scaleable fonts) may be specified, but proper use depends on the form’s or report’s
cpi value matching that of the font. Bitmap fonts have low fontcode values, like 0 for Line Printer, or 4
for Helvetica. fontname and fontcode values can also be specified from the “ufparam.txt” file.

symset can be any symbol set supported by your printer. The default symbol set is “10U”, using the PC-
8 character set. Other examples include 19U for Windows ANSI or 0Y for Postnet Bar Code. You can
also specify symbol sets by name from the “ufparam.txt” file. Only symbol set 9J is supported by the
pdf driver.

size is a numerical value that specifies the point size of a proportionally spaced font or the pitch size of a
fixed font. The values range from about 4 to 999.75 with default of 12. PCL printers generally round
this value to the nearest or smallest ¼ point. Note that for proportional fonts, the larger the number, the
larger the size printed. Fixed fonts, such as courier, are the opposite. If you specify the fit option, then
the size value represents the largest acceptable size.

The attribute words bold, italic, underline, and light will apply the indicated attribute(s) to the text.

percent indicates the percent gray to print the text, from 0 (white) to 100 (black). The default is black.
Note that the gs command, if used to improve laser printer shading, has no effect on text shading. Text
shading is always performed by the laser printer’s internal shading methods.

The rotate option will cause the text to be rotated around the baseline left edge at 90, 180, or 270
degrees. PCL5 supports rotation only in these increments.

Specify fixed or proportional (or “prop”) to override the default of fixed for Courier (or any fontcode
below 4100), and proportional for all else.

To include non-printable characters, such as control codes or 8-bit characters from a specific symbol set,
include the character’s numeric (ASCII) value in angle brackets. For example, to include a copyright
symbol from the Desktop (7J) symbol set, use something like this: “<165>1997 Synergetic Data
Systems Inc.”

UnForm Version 5

108

Color can be specified as white, cyan, magenta, yellow, blue, green, red, or black, or you can name a
RGB value as a 6-character hex string with rgb rrggbb, where rr is red (00-FF), gg is green (00-FF), and
bb is blue (00-FF).

justification can be one of the following words: left, center, right, decimal. UnForm will remove
leading and trailing spaces from the text and justify it within the column specification. Decimal
justification will use a “.” character unless a “decimal=character” line is placed in the ufparam.txt file
under the [defaults] section.

For justification, you must also specify ncols with the cols option, so that UnForm can determine the
right edge of the justification region.

If syntax 2 is used, then UnForm will search for occurrences of text or the regular expression regexpr. In
this case, col and row become 0-based offsets to the location of where matches are found. In addition,
the erasecols cols and eraseoffset cols can be used to remove match text. The search for text or regexpr
can be limited to a region on the page by adding a suffix in the format ‘@left,top,right,bottom’. To use a
literal “@” character in text or regexpr, it is necessary to specify “\@”.

If the syntax “!=text” or “!~regexpr” is used, then the search is for positions NOT equal to the text or
NOT matching the regular expression. When using the NOT syntax, only one search is performed per
line in the search region.

Barcode Note
The text command can be used to print a human-readable version of a barcode value, which can be
useful in cases where the human readable value differs from the supplied value, such as UPC-E, or when
a check digit value is needed.

Text in this syntax: “bcdsss|value” to print the human readable barcode value for symbology sss and
barcode text value, “ck1sss|value” to print check digit 1, or “ck2sss|value” to print check digit 2. See the
barcode command for symbology values.

Rotation note
Rotation is incompatible with center, decimal, or right justification.

Special Symbol Fonts
There is a difference between pdf and laser output for special symbols. In the laser printer environment,
you need to select a symbol set and font that contains the special characters you want, but in the pdf
environment, you need only select the font (font 4141 for Dingbat and 16686 for Symbol). Once a
symbol set or font is identified, use the appropriate decimal value of text to print the character you want.
The easiest way to do this is with angle bracket notation in a literal, like “<182>”, or with the CHR
function in an expression, like {CHR(182)}.

UnForm Version 5

109

On many LaserJet printers, the available symbol sets and fonts differ from those specified in UnForm’s
ufparam.txt file, and the only way to know for sure what is available is to do a font list print on the
printer. This should show you the proper symbol set and font number to use for your printer.

Examples

text 10,2,"SOLD TO" prints the text SOLD TO at the indicated position.

text 120,3,$LOGNAME prints user's login name at column 120, line 3.

text 1.25,63.25,{“Printed on “+date(0)}, cgtimes, 6, italic would place a small (6 point), italic note
about the date near the lower left corner of a page.

text “TOTAL:”,-1,0,”Total:”,cgtimes,12,bold,eraseoffset 0, erasecols 6 changes words TOTAL: to
Total: in CGTimes, 12 point, after backing up 1 column from where TOTAL: is found. It also erases the
word TOTAL: to avoid overprinting.

text 67,21,”bcd125|00010000654”,univers,12 will print the UPC-E human readable barcode value.

text 20,62,{terms$},cgtimes,10,cols 40,wrap,spacing 1 will print a paragraph of text contained in
terms$ between column 20 and 59, in cgtimes 10 point text, word-wrapping as necessary, using a
nominal line height matching the 10 point text.

text {pos(“Item”=text$[20])},21,”Number”,cgtimes,12 will print the word “Number” on line 21, in the
same column where the word “Item” is found in line 20.

Drivers: all. pdf driver fonts map to Courier, Helvetica, or Times-Roman, and support only symbol set
9J. Zebra fonts are limited in scalability, and the font codes are letters or numbers that identify internal
font codes specified in the ZPL documentation. Zebra shading is limited to 0% or 100%. Zebra doesn’t
support colors or justification. Wrap and fit options are only available on pcl and pdf drivers.

UnForm Version 5

110

TITLE

Syntax

title “titlestring”

Description

If this command is present, then pdf document creation adds a title titlestring to the document content.
This value is available in the general properties display dialog in the Adobe Acrobat Reader.

Drivers: pdf

UnForm Version 5

111

TRAY

Syntax

tray paper-source

Description

The tray keyword can be used to specify the paper source for any copy or for the print job. If, for
example, you have two input trays, one with letterhead stock and one with plain stock, you can specify
which paper stock to use for any form or copy of a form.

The paper-source is printer dependent. Typically, tray 1 is an upper tray source, tray 2 is a manual feed
source, and tray 4 is a lower tray paper source. These will likely not coincide with physical tray numbers
labeled on the printer itself, unfortunately. To determine the proper tray values, see your printer’s
documentation.

Drivers: laser

UnForm Version 5

112

UNDERLINE

See the bold keyword.

UnForm Version 5

113

UNITS

Syntax

units dpi | char

Description

As UnForm parses a rule set, column and row specifications are normally interpreted as decimal column
and row numbers that align enhancement elements such as boxes and shade regions with characters in
the source data. If you need to specify absolute dot positions, however, you can change the units to dpi.
From that point in the rule set, until a units char is found, row and column values are interpreted as
integer dot positions. Note that the dpi keyword has a direct impact on dpi units, though no impact on
char units.

For example, the following will print two text phrases at column 1 inch, row 1.5 inch.

units dpi
text 300,450,”Hello, world”
dpi 600
text 600,900,”Over printing hello world”
units char

Drivers: laser, pdf

UnForm Version 5

114

VLINE

Syntax

vline "text" [,erase] [,extend] [,thickness]

Description

Any vertical occurrence of the text indicated, of at least the length indicated, will be replaced with a
vertical line. The text must be composed of a single character repeated any number of times. There can
be multiple vline keywords in a rule set, if needed.

This keyword is useful if the application already produces boxes and lines with standard characters. See
also the hline keyword.

As with all box drawing, UnForm will consider line end-points to be at the center position of a character,
which may impact how lines intersect. Lines are drawn one dot (1/300th inch) thick.

If the erase option is used, then no line is drawn. Instead, the vertical text values are simply removed
from the output.

If the extend option is used, the lines are extended ½ characters up and down. The thickness parameter
specifies a pixel width to draw.

The search for text can be limited to a region on the page by adding a suffix in the format
‘@left,top,right,bottom’. To use a literal “@” character in text, it is necessary to specify “\@”.

Examples

vline "|" will search the report for pipe characters. All such characters found will be replaced with
vertical line draw (box) characters.

Drivers: all

UnForm Version 5

115

VSHIFT

Syntax

vshift n

Description

The vshift keyword shifts text vertically down (or up, if n is negative) the indicated number of lines.
The shifting is done before placement of any fixed shading or boxes. Lines shifted out of the printing
region (line 1 through the page specification, or 255 if not specified) are not printed. See the shift
keyword, also, for horizontal shifting.

The placement of relative shading, drawing, and attributes is determined before any shift.

Examples

vshift 1 shifts all text down one line, providing room for a box definition at the top of the page.

Drivers: all

UnForm Version 5

116

WORKING WITH MACROS

Using macros can increase the speed and efficiency of printing your enhanced forms and documents by
storing fixed raster graphics (e.g. logos) on the printer instead of transmitting these graphics on every
page being printed. With the graphics stored on the printer, only 12 to 14 bytes are transmitted to the
printer to select the macro to print. The time savings for printing are most noticeable when your system
can’t communicate to your printer at a high speed. For parallel or local network connections, macro
usage doesn’t often make too much difference. However, if you use serial connections or wide area
network printing with low- or shared-bandwidth, then implementing macros can help performance. The
more graphics used in enhancing forms, the more print transmission time you can save by using macros.

The PCL5 specification defines two types of macros: temporary and permanent. Temporary macros are
downloaded at the start of a print job, and can be executed by the printer until it is reset at the end of the
job. Permanent macros remain in printer memory until the printer power is turned off. A number from 1
to 32767 always identifies macros.

To access permanent macros, simply add macro n (n=macro #) to the rule set. To instruct UnForm to
utilize temporary macros, add the macros on command to the rule set. UnForm will then generate
temporary macros for any fixed elements of the job, download them at the start of the job, and execute
them as the job is printed.

If you print large batches of forms at one time, and use a serial or low-bandwidth network connection,
temporary macros can produce considerable time savings by reducing the amount of data transmitted to
the form. For example, if a logo image is 20,000 bytes, and line drawing and shading add another 5,000
bytes, a 50-page form will save about 49 x 25,000 bytes, or about 1.2MB. At typical serial throughput,
this could save as much as 10 minutes of print time. High-speed printer connections (parallel or local
network) only produce minimal time savings, which is sometimes offset by the extra overhead incurred
by UnForm to manage the macros in memory.

UnForm also provides the ability to generate permanent macro files. Permanent macros can be
downloaded once when the printer is turned on, and then UnForm can execute them without the
overhead of downloading them at the start of a job. To utilize this enhanced functionality, you must
modify the rule file and create a command line script to load the graphics into the printer.

To use this capability, you should split a rule set into two rule sets. One will be used to generate the
permanent macros (there can be a macro for each copy defined in the rule set); the other will be used as
before, but will replace the elements placed in the macros with macro n commands.

The rule set used to generate the macro can contain these commands that are in fixed positions: image,
attach, box, shade, and text. It can also contain “if copy” blocks. It should not contain any other
commands or any of the named commands if they incorporate relative positioning. Detect commands
are ignored; you will use the “-r ruleset” command line option instead. The remaining commands
should be left in the original rule set, and macro n commands added based upon the macro numbers
assigned in the command described below.

UnForm Version 5

117

Next, you need to generate macro files for each copy that is used in the rule set. To do this, use this
command line:

UnForm –makemacro macro-number –f rulefile –r macro-rule-set –macrocopy copy –o output-file

UnForm will generate a permanent macro in output-file, numbered as macro-number. This is the same
number you would then specify in the regular rule set, as macro macro-number. On UNIX, the output
can be piped directly to the spooler, either by removing the –o option or by using a quoted pipe as the
output file: –o “|lp –o raw –d printername”.

UnForm Version 5

118

REGULAR EXPRESSIONS

Regular expressions are supported in many of UnForm’s keywords, and can be used to great advantage
in detect statements and relative enhancements. Regular expressions are similar to, but much more
powerful than, MS-DOS or UNIX wildcards.

A regular expression is used to match patterns in text. By using special characters, called meta
characters, UnForm can be instructed to search for patterns, such as dates or codes, and use them in
processing. Below is a description of the various meta characters and how to use them.

• The simplest regular expression contains no meta characters. It just matches itself. John will match

any occurrence of the text “John”.

• Brackets can be used to match any of a group of values: [Jj]ohn will match both “John” and “john”.

• If a range of letters or numbers is valid in a position, then the range can be indicated in a similar
manner: [A-Za-z]ohn will match any letter, upper or lower case, followed by the letters “ohn”.

• If single character positions are not enough, then groups of options can be used with parentheses and
vertical bars, like this: (John|Jack|Jill) Smith, which matches any of the first names, along with
“Smith”.

• If any character will do in a position, use a dot: Jo.n will match “Jo”, followed by any single
character, followed by “n”.

• To repeat any pattern, including a dot, use an asterisk (*) for 0 or more repetitions, or + for 1 or more
repetitions: J.*n will match a “J”, followed by 0 or more characters, followed by “n”. Jo+n would
match a “J” followed by one or more “o”s, followed by “n”.

• You can include multiple meta characters and patterns in the expression. For example, to search for
3 digits followed by 2 letters: [0-9][0-9][0-9][A-Z][A-Z].

• To disable the special meaning of any of the meta characters, prefix it with a backslash. For
example, a phone number might include parentheses; to include them in the expression, they must be
disabled: \(...\)-...-.....

• The meta characters are: ., *, +, (,), |, [,], ^, and $.

UnForm Version 5

119

SAMPLE RULE SETS

UnForm is supplied with three sample reports and associated rule sets. A description of each report and
rule set follows. Each of the sample reports is in the UnForm directory, named “samplen.txt.” All rule
sets can be found in the file “sample.rul” in the UnForm directory.

To produce these samples on your own laser printer, you can use the following command, substituting
the proper sample text file:

unform50 –i sample-file –f sample.rul –o output-device

For the output device, you can use a device name, like LPT1 or /dev/lp0, a file name, or a quoted pipe
command to a spooler. For example, to print the first sample to a spooler, use something like this:

unform50 –i sample1.txt –f sample.rul –o “|lp –dhp –oraw”

To produce pdf versions of these files, change the output device to a pdf file name, and add “-p pdf” to
the command line.

A few of the samples don’t support detection capabilities, and they must be specified on the command
line with a “-r ruleset” option. If necessary, the documentation will state this requirement.

UnForm Version 5

120

INVOICE - INVOICE FOR PRE-PRINTED FORM

This sample is an invoice that is intended for a pre-printed form. The data generated by the application
doesn’t include any headings or simulated line drawing like a plain-paper invoice might. In this case,
UnForm must simulate the entire pre-printed invoice form.

unform50 –i sample1.txt –f sample.rul –o output-device

A title header prefixes all rule sets, which is just a unique name enclosed in brackets.

[Invoice]

Detect statements are used to identify this form from any other report that the application might send to
the printer through UnForm. Unlike most form packages, UnForm doesn’t dedicate a printer name to a
particular form (though it can be configured to do so). Instead, it reads the first page of data, then
compares it to the detect statements found in the various rule sets in the rule file.

The detect statements below indicate that
• a date (mm/dd/yy format) followed by two spaces, followed by 7 more characters will appear at

column 61, row 5
• 6 characters will appear at column 9, row 11
• a date, a space, and 6 characters will appear at column 10, row 21

detect 61,5,"~../../.. " # invoice date and #
detect 9,11,"~......" # customer code
detect 10,21,"~../../.." # ord date and cust code

The following lines define several constants that are used elsewhere in the rule set. Wherever the
constant names appear in a command, the value is substituted. Constants are not variables and are not
interpreted while the job is processed. They are simply literal placeholders used while UnForm reads
rule set lines.

set up document constants
const MAXCOLS=80 # max cols to output
const MAXRCOLS=79 # MAXCOLS-1
const LEFTCOL=.5 # use 1 if empty
const RIGHTCOL=80.5 # use LEFTCOL for symmetry
const MAXROWS=66 # max rows to output

The following lines define the page size and orientation. Set the printer to 600 dpi and the dimensions
of the page are 80 columns by 66 rows. All positioning will be based on 80 columns and 66 rows
appearing within the printed margins of the page. The gs on command triggers the use of graphical

UnForm Version 5

121

shading, which improves the look of shade regions over the native pcl shading of most laser printers,
especially at higher dpi settings and shade percentages. In addition, UnForm will generate two copies
of the job, with each page producing two copies as processed (collated).

portrait
dpi 600
gs on # graphical shading
cols MAXCOLS # max output columns
rows MAXROWS # max output rows

to print more copies, increase value and add copy titles in prejob
pcopies 2 # max # of copies

If this rule set is used to produce a pdf document, then the title of “Sample Invoice” will be added to the
pdf file. For laser output, the title command is ignored.

title "Invoice Sample" # view in pdf properties

The prejob code block is executed once at the beginning of the job, after the first page of data has been
read and the rule set parsed. This example is simply setting a variable form_title$ to a literal value
INVOICE. This variable is used later in the rule set.

The prepage code block is executed once per page, just after UnForm has read the text for the page, but
before any copies of that page have been printed. Within a prepage code block, you can insert any valid
Business Basic code (though you need to be careful not to insert any UnForm commands.) This code
initializes a variable shipzip$ to null, then looks for a regular expression pattern of 5 digits on line 15.
If it finds it, it sets shipzip$ to the zip code. After the code block is closed, a barcode command is used
to place a postnet barcode below the shipping address. The barcode command uses the syntax
“{shipzip$}”, indicating the expression shipzip$ should be used to generate the data to barcode.

Once the prepage code block creates shipzip$, it then scans a range of rows looking for special memo
format lines. It marks these lines with the characters “mL” in the first two columns. Later in the rule
set, you’ll see how these markers are used to treat memo lines differently than standard invoice lines.

The order of execution is controlled by UnForm. There is actually no need to place the barcode
command below the prepage code block, as UnForm will properly execute the code block before any
form commands are executed at run-time.

prejob {
 # set up variables needed by merged routines below
 # if form title changes per page,
 # set up in prepage routine below
 form_title$="INVOICE"
}

UnForm Version 5

122

prepage {
 # find zip code in city,state,zip line for bar code
 shipzip$=""
 # regular expression of 5 digits on line 15
 x=mask(text$[15],"[0-9][0-9][0-9][0-9][0-9]")
 if x>0 then shipzip$=get(x,15,5)

 # mark memo lines for special handling in detail section below
 # memo start in column 28 with all spaces before
 for i=25 to 56
 if len(text$[i])>27 and trim(text$[i](1,27))="" then \
 text$[i](1,2)="mL"
 next i
}

The pdf driver supports the ability to email the pdf file created using the email command. The
commented # email line below provides an example of the command. It requires four arguments, each
of which can be a literal string value or a string expression enclosed in braces. In order for the email
command to work, the mailcall.ini file must be properly configured for your system.

When run in pdf mode, and if mailcall.ini is configured properly,
and if the system can communicate with the mail server, then the
next line would send the pdf invoice as an attachment to an email.
email "someone@somewhere.com","me@mycompany.com", \
{"A test invoice "+cvs(get(71,5,7),3)}, \
"Attached is a sample invoice\n"

The next group of commands creates a page header with box and text commands. The box commands
are given as the cbox variant, which accepts two pairs of numbers as opposite corners of the box. Some
of the commands are stored in a different rule set, called “Mrg Form Header”. This rule set is also
located in the sample.rul file. The lines in that rule set are merged in here as if they were part of this
rule set.

Note that some of the text commands, and also a barcode command, use an expression rather than a
literal. An expression is an executable value assignment enclosed in braces. For example, one text
command uses an expression {cut(61,5,8,"")},which cuts out the text at column 61, row 5, for 8 columns,
returning the result, while setting those positions to “”. The result is printing at position 75,5 what was
at position 61,5.

heading section
const HFONT=univers,12 # headings
cbox LEFTCOL,1,RIGHTCOL,MAXROWS,5 # complete page box
merge "Mrg Form Header" # merge std hdr rules

UnForm Version 5

123

right top ribbon
const HFONT=univers,11,italic # headings
const DFONT=cgtimes,11,bold # data

draw info box with internal grid and shading
horizontal lines at 6 and 8
vertical line at 74 with shading between 67 and 74
cbox 67,4,RIGHTCOL,10,5,crows=6 8,ccols=74::20
text 68,5,"Date",HFONT
text 68,7,"Invoice",HFONT
text 68,9,"Page #",HFONT
cut data from old position and place in new
text 75,5,{cut(61,5,8,"")},DFONT
text 75,7,{cut(71,5,7,"")},DFONT
text 75,9,{cut(79,5,2,"")},DFONT

sold to section
cbox LEFTCOL,10,41,18.5,5
cbox LEFTCOL,10,41,11.25,0,10
text 8,10.75,"SOLD TO",HFONT,bold
cfont 8,12,40,15,DFONT # sold to address
if copy 1
 barcode 8,16,{shipzip$},900,9.0,2
end if
text 2,18,{"Your customer code is "+cut(9,11,6,"")+"."},8,cgtimes

ship to section
cbox 41,10,RIGHTCOL,18.5,5
cbox 41,10,RIGHTCOL,11.25,0,10
text 48,10.75,"SHIP TO",HFONT,bold
cut ship to address and place in new position
text 48,12,{mcut(51,12,30,4,"","Y","Y")},DFONT
text 43,18,{"Your ship to code is "+cut(55,11,6,"")+"."},8,cgtimes

This section draws order detail boxes and headings. The first cbox command draws a grid, using the
internal crows and ccols options. In addition to the boxes and headings, the data from the input stream
is fonted using a series of cfont commands, one for each section.

ribbon section
const L1=19
const L2=20
draw info box with internal grid and shading
horizontal line at 20.5 with shading between 18.5 and 20.5
vertical lines at 9, 18, 25, and 65
cbox LEFTCOL,18.5,RIGHTCOL,22.5,5,crows=20.5::20,ccols=9 18 25 65
special internal grid in ribbon box
cbox 29,18.5,65,21.5
cbox 42,18.5,56,21.5

UnForm Version 5

124

ribbon headings
text 1,L1,"Order",HFONT,right,cols=8
text 1,L2,"Number",HFONT,right,cols=8
text 10,L1,"Order",HFONT,center,cols=8
text 10,L2,"Date",HFONT,center,cols=8
text 19,L1,"Cust.",HFONT
text 19,L2,"Number",HFONT
text 26,L1,"Sls",HFONT
text 26,L2,"Prs",HFONT
text 30,L1,"Purchase",HFONT
text 30,L2,"Order No.",HFONT
text 43,L2,"Ship Via",HFONT
text 57,L1,"Ship",HFONT,center,cols=8
text 57,L2,"Date",HFONT,center,cols=8
text 66,L2,"Terms",HFONT
ribbon data
cfont 1,21,8,21,DFONT,right # order #
cfont 10,21,17,21,DFONT,center # order date
cfont 19,21,24,21,DFONT # cust #
cfont 26,21,28,21,DFONT # sls prs code
cfont 26,22,64,22,DFONT # sls prs name
cfont 30,21,41,21,DFONT # po #
cfont 43,21,55,21,DFONT # ship via
cfont 57,21,64,21,DFONT,center # ship date
cfont 66,21,MAXCOLS,22,DFONT # terms

This section of lines controls the formatting of the invoice detail lines. A grid is drawn around the
column headers and detail lines. The column headers are shaded. Item detail lines are are fonted using
a series of font commands that look for the pattern “~\.[0-9][0-9][0-9][0-9]” which is a period followed
by four digits. Wherever that occurs, font changes are made relative to that position. Similarly, the
memo lines identified by the prepage code block, and marked with the text marker “mL”, are fonted with
a different column structure. In addition to the font command, an erase command is used to remove the
text markers.

detail section
detail headings
const L1=23
const L2=24
draw info box with internal grid and shading
horizontal line at 24.5 with shading between 22.5 and 24.5
vertical lines at 5, 10, 16, 51, 55, and 67
cbox LEFTCOL,22.5,RIGHTCOL,56.5,5,crows=24.5::10, \
 ccols=5 10 16 51 55 67
text 1,L1,"Qty",HFONT,right,cols=4
text 1,L2,"Ord",HFONT,right,cols=4
text 6,L1,"Qty",HFONT,right,cols=4
text 6,L2,"Ship",HFONT,right,cols=4
text 11,L1,"Qty",HFONT,right,cols=5
text 11,L2,"Bkord",HFONT,right,cols=5

UnForm Version 5

125

text 20,L2,"Item & Description",HFONT
text 52,L2,"U/M",HFONT,center,cols=3
text 56,L1,"Unit",HFONT,right,cols=11
text 56,L2,"Price",HFONT,right,cols=11
text 68,L1,"Extended",HFONT,right,cols=12
text 68,L2,"Price",HFONT,right,cols=12
detail data
Modify fonts for lines. As comments may be present in the same rows,
use a pattern to locate the .nnnn in the price column,
which indicates a part number line.
Use a prepage routine to find the comments and change their font.
font "~\.[0-9][0-9][0-9][0-9]",-61,0,4,1,DFONT,right # qty ord
font "~\.[0-9][0-9][0-9][0-9]",-56,0,4,1,DFONT,right # qty shipped
font "~\.[0-9][0-9][0-9][0-9]",-50,0,4,1,DFONT,right # qty b/o
font "~\.[0-9][0-9][0-9][0-9]",-42,0,30,2,DFONT # item # & desc
font "~\.[0-9][0-9][0-9][0-9]",-10,0,3,1,DFONT,center # u/m
font "~\.[0-9][0-9][0-9][0-9]",-6,0,11,1,DFONT,right # unit price
font "~\.[0-9][0-9][0-9][0-9]",6,0,12,1,DFONT,right # ext price

handle memo lines
inserted 'mL' in prepage above
font "mL@1,25,2,56",10,0,63,1,HFONT
erase "mL@1,25,2,56",0,0,2,1

Watermark text is placed in the middle of the detail lines. This text is centered between column 1 and
MAXCOLS, is rendered at 120 points, and is printed at 20% gray shading.

watermark - large font with light shading
text 1,52,{form_title$},cgtimes,120,shade 20,center,cols=MAXCOLS

The totals section is formatted like the other sections, with a grid, text headings, and font changes that
apply to the input stream text.

totals section
draw info box with internal grid and shading
horizontal lines at 59 and 63
vertical line at 69 with shading between 58 and 69
cbox 58,57,RIGHTCOL,65,5,ccols=69::20,crows=59 63
text 59,58,"Sales Amt",HFONT
text 59,61,"Sales Tax",HFONT
text 59,62,"Freight",HFONT
text 59,64.25,"TOTAL",HFONT,bold,14
cfont 59,60,68,60,HFONT # disc hdr
cfont 70,58,MAXRCOLS,65,DFONT,14,decimal # totals

These text lines simply demonstrate some of UnForm’s paragraph features. The first text command
forces the longest line in the paragraph to fit within the number of defined columns. The maximum point
size is 12, but that may be adjusted down to accommodate the longest line. Lines are delimited by the \n

UnForm Version 5

126

character sequence, or by a CHR(10) within an expression. Line spacing is determined by the final
point size, and may be adjusted with the spacing option. For example, if the rendered size is 8 point,
then the spacing of 1 will result in 9 lines per inch (9 x 8=72), while spacing of 1.5 would result in 6
lines per inch (9/1.5=6).

The second example will force use the defined point size to render the text, but any lines wider than the
specified columns will be word-wrapped.

The third example shows how to use a specified ASCII value in a text command. The ASCII value 174,
when printed using the symbol set 9J, is a trademark symbol. This technique can be used to print latin
characters and special symbols. The symbol set determines what any given character value prints as.
The 9J symbol set is the default. See the –testpr command line option for viewing printed tables of
different symbol sets.

footer section
These lines show fitting and wrapping of text
text 2,60,"This sample message text, which contains\nline breaks, \
 is sized to fit in 20 columns.",cols 20,cgtimes,12, \
 fit,spacing 1

text 28,60,"This sample message text is word wrapped to not exceed \
 20 columns, while retaining the specified 12 point size.",\
 cgtimes,cols 20,12,wrap,spacing 1

text 2,64,"This sample was generated by UnForm<174>.",7,cgtimes, \
 symset 9J,blue

This set of commands places the phrase “Customer Copy” on copy 1, and “Remittance Copy” on copy
2. The text is placed at row 65.5, and is centered within the columns defined at column 1 and the
constant MAXCOLS, which represents the whole page width.

copy name section
const ROW=65.5
if copy 1
 text 1,ROW,"Customer Copy",HFONT,bold,center,cols=MAXCOLS
end if
if copy 2
 text 1,ROW,"Accounting Copy",HFONT,bold,center,cols=MAXCOLS
end if

UnForm Version 5

127

STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB

In this sample, a two-page, plain paper statement is printed. The two pages contain two slightly different
formats, with the second page containing detail lines and a customer aging, and the first page containing
some more detail lines and the phrase “CONTINUED” at the bottom. In the same statement print run,
some statements may contain a single page, others two or more pages.

The trick here is to get UnForm to produce two formats based on the content of each page. In order to
accomplish this, we define the job to produce multiple copies, and assign certain copies to certain
formats. Using a precopy{} code block, we can then control the printing of the different formats.

unform50 –i sample2.txt –f sample.rul –o output-device

This statement header identifies this rule set.

[Statement]

The word STATEMENT appears at column 34, row 2, and a date appears at column 65, row 7. To
further clarify, a date format is matched at position 65, 7.

detect 34,2,"STATEMENT"
detect 65,7,"~../../.." # statement date

The page dimensions are 66 rows and 75 columns. The text input to UnForm doesn’t contain any form-
feeds to indicate the end of a page, so the command “page 66” tells UnForm to consider each 66 lines
to be a page.

Pcopies 4 is used to tell UnForm to print four copies of each page, with copies following each other in
sequence for each page (collated). You will find later that UnForm doesn’t actually print all copies of
each page, but instead simply prints selected copies, depending on the format required. As each page is
processed, if the page contains aging totals, UnForm prints 2 copies of that format, and if it does not
contain aging totals, then UnForm prints 2 copies of the second format.

set up document constants
const MAXCOLS=75 # max cols to output
const MAXRCOLS=74 # MAXCOLS-1
const LEFTCOL=1 # use 1 if empty
const RIGHTCOL=75 # MAXCOLS for symmetry
const MAXROWS=66 # max rows to output

portrait
dpi 300

UnForm Version 5

128

gs on # graphical shading
cols MAXCOLS # max output columns
rows MAXROWS # max output rows
page MAXROWS # no form feeds used

to print more copies, increase value and add copy titles in prejob
Copy 1,2 Statement with aging totals
Copy 3,4 Statement w/o aging totals
pcopies 4 # max # of copies

If this rule set is used to produce a pdf document, then the title of “Statement Sample” will be added to
the pdf file. For laser output, the title command is ignored.

title "Statement Sample" # view in pdf properties

The prejob command defines a string variable form_title$, assigning it the value “STATEMENT”. This
variable is used later in the rule set for a page heading and also in a watermark.

prejob {
 # set up variables needed by merged routines below
 # if form title changes per page,
 # set up in prepage routine below
 form_title$="STATEMENT"
}

The prepage code block performs two functions. It checks the input data for the word “CONTINUED”
at position 66, 64. If that word is present, then a variable continued$ is assigned to the phrase
“Continued”; otherwise it is set to null. In addition, at three individual lines (16, 62, and 64), there may
be single ! characters used as character-mode vertical lines in the input data. Elsewhere in the rule set
is a ‘vline “!!”, erase’ command, which erases instances of two or more ! characters vertically on the
page. This code takes care of the single-row instances.

prepage {
 # get continued if it exists
 continued$=get(66,64,9)
 if continued$="CONTINUED" then continued$="Continued" \
 else continued$=""

remove single ! from line draw regions
 x=pos("!"=text$[16]; \
 while x>0; text$[16](x,1)="",x=pos("!"=text$[16]);wend

 x=pos("!"=text$[62]; \
 while x>0; text$[62](x,1)="",x=pos("!"=text$[62]);wend

UnForm Version 5

129

 x=pos("!"=text$[64]; \
 while x>0; text$[64](x,1)="",x=pos("!"=text$[64]);wend

}

The precopy code block is executed as each of the four copies are about to be printed. The logic here
indicates the copies 1 and 2 are for pages that do not contain the word “CONTINUED” (remember the
prepage code block?), and copies 3 and 4 do contain that word. By setting the variable skip to a non-
zero value, the copy being processed is skipped. Only one of the two formats is printed, depending on
the content of the page.

precopy {
 if copy=1 or copy=2 then if continued$="Continued" then skip=1
 if copy=3 or copy=4 then if continued$<>"Continued" then skip=1
}

The following lines remove most of the existing character-mode line drawing elements from the input
data. The hline and vline commands scan for places where at least the indicated number of characters,
horizontally or vertically, occur on the page. The erase option removes them rather than replacing them
with graphical lines.

#remove existing lines
hline "--",erase
hline "==",erase
vline "!!",erase
cerase 1,1,1,MAXROWS # erase all 1st column
cerase MAXCOLS,1,MAXCOLS,MAXROWS # erase all last column

The following lines draw the page headings. Some of the commands are stored in another rule set,
“Mrg Form Header”, which is merged as the rule set is parsed. The headings already exist, and are
moved and fonted with text commands using expressions, such as {cut(66,5,4,””)}.

heading section
const HFONT=univers,12 # headings
cerase 1,1,MAXCOLS,10
cbox LEFTCOL,1,RIGHTCOL,MAXROWS,5 # complete page box
merge "Mrg Form Header" # merge std hdr rules

right top ribbon section
const HFONT=univers,11,italic # headings
const DFONT=cgtimes,11,bold # data
draw info box with internal grid and shading
horizontal line at 6
vertical line at 68 with shading between 63 and 68
cbox 63,5,MAXCOLS,9,5,crows=7,ccols=68::20

UnForm Version 5

130

text 64,6,{cut(66,5,4,"")},HFONT # page #
text 64,8,{cut(59,7,4,"")},HFONT # date
text 69,6,{trim(cut(71,5,3,""))},DFONT # page #
text 69,8,{trim(cut(65,7,8,""))},DFONT # date

customer section
draw info box with internal grid and shading
vertical line at 10 with shading between 1 and 10
cbox LEFTCOL,10,MAXCOLS,15,5,ccols=10::10
text 2,11,{cut(2,10,2,"")},HFONT # to
text 4,13,{trim(cut(15,10,10,""))},DFONT # cust code
cfont 12,11,MAXCOLS,14,DFONT # address

The detail section contains several columns of information. There are fewer detail lines on pages with
the aging data, so the grid drawing is made specific to particular formats with “if copy 1,2” and “if
copy 3,4” sections. Then two groups of font changes are used, first for the column headings and then
for the data columns.

detail section
detail headings
draw info box with internal grid and shading
horizontal line at 6
vertical line at 68 with shading between 63 and 68
if copy 1,2
 cbox LEFTCOL,15,MAXCOLS,56,5,crows=17::20, \
 ccols=10 18 27 39 48 60 63
end if
if copy 3,4
 cbox LEFTCOL,15,MAXCOLS,61,5,crows=17::20, \
 ccols=10 18 27 39 48 60 63
end if
const ROW=16
cfont 2,ROW,9,ROW,HFONT,center # date
cfont 11,ROW,17,ROW,HFONT # inv #
cfont 19,ROW,26,ROW,HFONT,center # due date
cfont 28,ROW,38,ROW,HFONT,right # due amt
cfont 40,ROW,47,ROW,HFONT,center # pmt date
cfont 49,ROW,59,ROW,HFONT,right # pmt amt
cfont 61,ROW,62,ROW,HFONT,center # type
cfont 64,ROW,MAXRCOLS,ROW,HFONT,right # balance
detail data
const DFONT=cgtimes,11 # data
cfont 2,18,9,60,DFONT,center # date
cfont 11,18,17,60,DFONT # inv #
cfont 19,18,26,60,DFONT,center # due date
cfont 28,18,38,60,DFONT,right # due amt
cfont 40,18,47,60,DFONT,center # pmt date
cfont 49,18,59,60,DFONT,right # pmt amt

UnForm Version 5

131

cfont 61,18,62,60,DFONT,center # type
cfont 64,18,MAXRCOLS,60,DFONT,right,BOLD # balance

A watermark prints the form title as large, lightly shaded text. Its position depends upon the format,
hence the use of if copy blocks.

watermark - large font with light shading and rotation
if copy 1,2
 text 39,56,{form_title$},cgtimes,75,shade 20,center, \
 cols=MAXCOLS,rotate 90
end if
if copy 3,4
 text 44,61,{form_title$},cgtimes,85,shade 20,center, \
 cols=MAXCOLS,rotate 90
end if

The footer section differs considerably between the two formats. Copies 1 and 2 are associated with
pages that have aging data, so you see the fonting of the the aging columns defined there. Copies 3 and
4 are printed when the word “CONTINUED” appeared, and that word is printed below, though as the
value stored in continued$ (“Continued”).

footer section
remarks
if copy 1,2
 cbox LEFTCOL,56,RIGHTCOL,61,5
 cfont 2,57,MAXRCOLS,60,HFONT
endif
totals
const DFONT=cgtimes,11,bold # data
if copy 1,2
 cbox LEFTCOL,61,RIGHTCOL,64.5,5,crows=63::20, \
 CCOLS=14 26 38 50 62
 const ROW=62
 cfont 1,ROW,13,ROW,HFONT,right # current
 cfont 15,ROW,25,ROW,HFONT,right # 1-15
 cfont 27,ROW,37,ROW,HFONT,right # 16-30
 cfont 39,ROW,49,ROW,HFONT,right # 31-45
 cfont 51,ROW,61,ROW,HFONT,right # over 45
 cfont 63,ROW,MAXRCOLS,ROW,HFONT,right,bold,12 # total due
 const ROW=64
 cfont 1,ROW,13,ROW,DFONT,right # current
 cfont 15,ROW,25,ROW,DFONT,right # 1-15
 cfont 27,ROW,37,ROW,DFONT,right # 16-30
 cfont 39,ROW,49,ROW,DFONT,right # 31-45
 cfont 51,ROW,61,ROW,DFONT,right # over 45
 cfont 63,ROW,MAXRCOLS,ROW,DFONT,right,bold,12 # total due
endif

UnForm Version 5

132

if copy 3,4
 cerase 1,62,MAXCOLS,66
 text 1,65,{Continued$},HFONT,right,cols=MAXRCOLS
endif

Finally, within the two formats are two physical copies. Each of these copies is either for the customer
to keep or for the customer to return with their payment. Copy 1, the first page of format 1, and copy 3,
the first page of format 2, get the “Customer Copy” footer. The others get the “Remittance Copy”
footer.

copy name section
const ROW=65.5
if copy 1,3
 text 1,ROW,"Customer Copy",HFONT,bold,center,cols=MAXCOLS
end if
if copy 2,4
 text 1,ROW,"Remittance Copy",HFONT,bold,center,cols=MAXCOLS
end if

UnForm Version 5

133

AGING REPORT - ENHANCED AGING REPORT

In this third example, an aging report is enhanced to be more readable. This shows the use of relative
enhancements, which are those applied relative to the occurrence of text or regular expressions anywhere
on the page.

unform50 –i sample3.txt –f sample.rul –o output-device

This statement header identifies this rule set.

[AgingReport]

The only detect statement required is this one, looking for the report title at column 50, row 2.

detect 50,2,"Detail Aging Report"

These constants are used throughout the rule set.

set up document constants
const MAXCOLS=131 # max cols to output
const MAXRCOLS=130 # MAXCOLS-1
const LEFTCOL=.5 # use 1 if empty
const RIGHTCOL=131.5 # LEFTCOL for symmetry
const MAXROWS=66 # max rows to output

This report should print in landscape orientation, rather than the default portrait. UnForm will scale
the columns and rows to 131 by 66.

landscape
dpi 1200
gs on # graphical shading
cols MAXCOLS # max output cols
rows MAXROWS # max output rows

pcopies 1 # max # of copies

The title “Aging Sample” will appear in pdf document properties. It is ignored for laser output.

title "Aging Sample" # view in pdf properties

UnForm Version 5

134

The following prejob code demonstrates the use of sdOffice to mine data from this report and export it
to Microsoft Excel . SdOffice can be running anywhere on your network on a system with Excel. The
code relies on your setting two variables correctly. First, the sdo$ variable should be set to the path to
the sdOffice client program sdofc_e.bb. In addition, the value of stbl(“$sdhost”) needs to be set to the
address or hostname of the system running sdOffice. An optional way of doing this is to define an
environment variable prior to running UnForm, called SDHOST. If you use that alternative, then
comment out the x$=stbl(…)line.

The code here contains enough error handling to ignore the code if sdOffice isn’t present or fails to
execute.

prejob {
 # set up sdOffice export to Excel
 # set to path to your sdoffice *.bb programs
 sdo$="/u0/sdofc/sdofc_e.bb"

 # You can set the environment variable SDHOST, or use this
 # stbl function to define the sdOffice server address
 x$=stbl("$sdhost","bcj")

 # initialize excel
 call sdo$,err=prejob_done,"newbook","",errmsg$
 if errmsg$>"" then goto prejob_done
 sdofc_init=1
 call sdo$,"show","",""
 call sdo$,"setdelim |","",""
 call sdo$,"writerow ID|Name|Phone|Over 60|Total","",""
 call sdo$,"format row=1,font=Arial,size=12,bold","",""
prejob_done:
}

The prepage code block starts with code that exports data to Excel, but only if the prejob code block
successfully initializes the sdOffice connection. In addition to that code, it also sets two numeric
variables, colw and scol, based upon positions and widths of report column headers. These values are
used later in the rule set for fonting and line drawing.

prepage{
 # if prejob hasn't initialized sdoffice, skip this code
 if sdofc_init<>1 then goto sdofc_complete

 for row=1 to 66
 ln$=text$[row]

 # customer heading row contain phone numbers
 x=mask(ln$,"\(...-...-....\)")

UnForm Version 5

135

 while x
 custid$=mid(ln$,1,6)
 custname$=trim(mid(ln$,8,30))
 custphone$=trim(mid(ln$,38,14))
 x=0
 wend

 # totals - 50 plus spaces followed by digit-.-digit-digit
 x=mask(ln$,"^"+fill(50)+".*[0-9]\.[0-9][0-9]")
 while x
 amount60=cnum(mid(ln$,87,11))
 amount90=cnum(mid(ln$,98,11))
 amount120=cnum(mid(ln$,109,11))
 over60=amount60+amount90+amount120
 total=cnum(mid(ln$,120,11))

 export$=custid$+"|"+custname$+"|"+custphone$+"|"
 export$=export$+str(over60)+"|"+str(total)
 call sdo$,"writerow "+export$,"",""
 x=0
 wend

 next row
sdofc_complete:

 # Now for some tricky code.
 # Agings can have different headings and column widths
 # To use version 5 features allowing variable columns and rows,
 # the following code will calculate starting positions
 # and column widths. It assumes a consistency in column widths,
 # 1 char negative, and 1 blank space between each column
 hd1$=text$[7] # temp heading line with agings
 x=pos("Type"=hd1$)
 xhd1$=trim(hd1$(x+4)) # remove all except agings
 x=pos(" "=xhd1$)
 x$=xhd1$(1,x-1) # get first column header
 xhd1$=trim(xhd1$(x))
 x=pos(x$=hd1$) # find true position
 x1=x+len(x$)-1 # get end of first column
 # now find end of 2nd column
 x=pos(" "=xhd1$)
 x$=xhd1$(1,x-1) # get second column header
 x=pos(x$=hd1$)
 x2=x+len(x$)-1 # get end of second column
 # now calculate mask width less space between columns
 colw=x2-x1-1
 # now calculate start of first field
 scol=x1-colw+2
}

UnForm Version 5

136

The postjob code block performs some closing formatting control if the job is exporting data to Excel. If
sdOffice is not being used, based upon the attempt to initalize it in the prejob code block, then this code
is skipped.

postjob{
 # if prejob hasn't initialized sdoffice, skip this code
 if sdofc_init<>1 then goto sdofc_complete2

 call sdo$,"leaveopen","",""
 call sdo$,"format autofit","",""
 call sdo$,"format col=1,numberformat=@","",""
 call sdo$,"format col=4,numberformat=""###,##0.00""","",""
 call sdo$,"format col=5,numberformat=""###,##0.00"",bold","",""

 call sdo$,"insertrow 1","",""
 call sdo$,"mergecells range=A1:E1","",""
 call sdo$,"writecell range=A1,value="+22+ \
 "Over 60 Aging Values as of "+date(0)+22,"",""
 call sdo$,"format range=A1:E1,center,size=15,bold","",""
sdofc_complete2:
}

Here, finally, are the commands to enhance the formatting of the report. The initial commands use text
commands with cut expressions to move the report header data around and change the fonting.

heading section
const BLFONT=univers,10,bold,italic
const BSFONT=univers,9,bold,italic
cbox .5,.5,RIGHTCOL,5,5,30
line 1
text 2,1.25,{trim(cut(1,1,10,""))},BSFONT # date
text 1,1.25,{trim(cut(20,1,100,""))},BLFONT,center, \
 cols=MAXRCOLS # comp name
text 1,1.25,{trim(cut(121,1,15,""))},BSFONT,right, \
 cols=MAXRCOLS # page #
line 2
text 2,2.35,{trim(cut(1,2,10,""))},BSFONT # time
text 1,2.35,{trim(cut(20,2,100,""))},BLFONT,center, \
 cols=MAXRCOLS # rpt title
line 3
text 1,3.45,{trim(cut(20,3,100,""))},BSFONT,center, \
 cols=MAXRCOLS # sub heading
line 4
text 1,4.45,{trim(cut(20,4,100,""))},BSFONT,center, \
 cols=MAXRCOLS # sub heading

UnForm Version 5

137

The section formats the column headings. The left portion is drawn with text commands, while the aging
columns are fonted with font commands, which use the positions from the values calculated in the
prepage code block.

detail heading section
const HFONT=univers,10,italic
cbox LEFTCOL,5.25,RIGHTCOL,7.5,1,20
line 1
cerase 1,6,MAXCOLS,6
text 1,6,"Customer # & Name",HFONT
text 38,6,"Phone #",HFONT,center,cols=14
text 54,6,"Contact",HFONT

line 2
cerase 1,7,49,7
text 3,7,"Invoice #",HFONT
text 12,7,"Due Date",HFONT,center,cols=8
text 21,7,"P/O #",HFONT
text 32,7,"Order #",HFONT
text 39,7,"Terms",HFONT,center,cols=5
text 45,7,"Type",HFONT,center,cols=4
using variables from prepage, enhance aging headings
font {scol},7,{colw-1},1,HFONT,right
font {scol+1*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+2*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+3*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+4*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+5*(colw+1)},7,{colw-1},1,HFONT,right
font {scol+6*(colw+1)},7,{colw},1,HFONT,right,bold

The report body is enhanced using UnForm’s ability to scan for patterns and anchor enhancements to
those patterns. The first series of font commands scan for two spaces in the region from column 1, row
9 through column 2, row 66 (defined as the constant MAXROWS above). At each point in that search
region, if the two spaces are found, a font command is issued relative to the location. This changes the
font of the input data at that location.

The second series of font commands looks for customer heading line types, by searching for any alpha
or digit character in the region 1,9 though 2,66. A different set of font commands is then issued for
those positions.

detail data section
const BDFONT=cgtimes,10,bold
const DFONT=cgtimes,10
invoice line
font " @1,9,2,MAXROWS",2,0,8,1,DFONT
font " @1,9,2,MAXROWS",11,0,8,1,DFONT,center
font " @1,9,2,MAXROWS",20,0,10,1,DFONT

UnForm Version 5

138

font " @1,9,2,MAXROWS",31,0,7,1,DFONT
font " @1,9,2,MAXROWS",38,0,5,1,DFONT,center
font " @1,9,2,MAXROWS",44,0,4,1,DFONT,center
using variables from prepage, enhance agings
font " @1,9,2,MAXROWS",{scol},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+1*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+2*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+3*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+4*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+5*(colw+1)},0,{colw},1,DFONT,decimal
font " @1,9,2,MAXROWS",{scol+6*(colw+1)},0,{colw+1},1,BDFONT,decimal

cust line
font "~[A-Z0-9]@1,9,2,MAXROWS",0,0,6,1,BDFONT
font "~[A-Z0-9]@1,9,2,MAXROWS",7,0,28,1,BDFONT
font "~[A-Z0-9]@1,9,2,MAXROWS",37,0,14,1,BDFONT,center
font "~[A-Z0-9]@1,9,2,MAXROWS",53,0,36,1,BDFONT
shade "~[A-Z0-9]@1,9,2,MAXROWS",0,-.15,{RIGHTCOL-1.5},1,20

The following commands look for sequences of dashes, which indicate sub-total lines. Wherever a
sequence of 50 dashes occurs, a box is drawn and input data is bolded. In addition, the original dashes
are removed with the hline command.

customer totals
hline "---",erase
example of UnForm command with continuation to next line
box "--", \
 -1,.25,{RIGHTCOL-53},1.25
bold "--",0,1,120,1

Finally, grand total lines are treated with special fonting and a box.

grand totals
const DFONT=cgtimes,11,bold
sample of box command with increased thickness and double lines
box "Grand Total:",-9.5,-1.25,MAXRCOLS,2.25,5,30,dbl 9
font "Grand Total:",0,0,12,1,BDFONT,13
font "Grand Total:",{scol-10},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+1*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+2*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+3*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+4*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+5*(colw+1)},0,{colw},1,DFONT,decimal
font "Grand Total:",{scol-10+6*(colw+1)},0,{colw+1},1,DFONT,decimal

UnForm Version 5

139

LABELS – TEXT LABELS TO LASER LABELS

UnForm 4 is capable reading rows of input, parsing those rows into logical pages, and reproducing the
output with different dimensions. A typical situation that can take advantage of this is if your
application is designed to print mailing labels on continuous label stock on dot matrix printers. The
labels can be 1-up, 2-up, or any other dimensions. As long as each label is a consistent number of rows
and columns, UnForm can parse each label and treat each label as a logical page with the across and
down commands. To use this sample, you must add “-r labels” to the command line.

unform50 –i sample4.txt –f sample.rul –r labels –o output-device

This statement header identifies the rule set. The name is used in the –r command line option.

[labels]

Each label “page” is 35 columns and 6 rows of input text. If each line is 106 to 140 characters wide,
then four labels are parsed from the columns. When the output is produced, each label will be 30
columns by 6 rows. The labels will be arranged 3 rows across and 10 down the page. UnForm will
actually print 3x30=90 columns and 10x6=60 rows on each physical page.

Most laser label stock has ½ inch top and bottom margins. The margin command adds 75 dots (¼ inch)
to the standard UnForm top and bottom margins, which default to ¼ inch.

In this sample, the text of the labels is printed from lines 1 to 4. By using the “vshift 1” command,
UnForm will move the text to lines 2 to 5. The shift command moves the text to the right.

page 35,6
rows 6
cols 30
across 3
down 10
font 1,1,40,6,cgtimes,12
margin 0,0,75,75
vshift 1
shift 2
manual feed tray is usually 2
tray 2

The barcode command supports both 5 and 9-digit formats of the postnet barcode. To get either to
print, the prepage codeblock sets one or the other variable (zip$ or zip9$), and both commands are
issued. A null value is not barcoded. The prepage code extracts the zip code from line 3 or 4 of the
label. It then determines the length, and sets zip$ or zip9$ appropriately.

UnForm Version 5

140

barcode 2,6,{zip$},900,11.0,2
barcode 2,6,{zip9$},905,11.0,2

prepage{
get zip code from line 3 or 4
zip$="",zip9$="",zipline$=""
if trim(text$[4])>"" then zipline$=trim(text$[4])
if zipline$="" then if trim(text$[3])>"" then zipline$=trim(text$[3])
while zipline$>""
 x=mask(zipline$,"[0-9][0-9][0-9][0-9][0-9]")
 if x>0 zip$=zipline$(x)
 zipline$=""
wend
remove possible hyphen and validate length
x=pos("-"=zip$); if x=6 then zip$=zip$(1,5)+zip$(7)
if len(zip$)<>5 and len(zip$)<>9 then zip$=""
if len(zip$)=9 then zip9$=zip$,zip$=""
}

UnForm Version 5

141

132X4 – MULTI-UP, SCALED REPORTING

This sample rule set will work with any 132 column by 66-row report. To use it, you must add “-r
132x4” to the command line. The report uses the across and down commands to scale the report to print
four logical pages to a physical page.

unform50 –i sample3.txt –f sample.rul –r 132x4 –o output-device

The rule set header identifies the name.

[132x4]

The page dimensions are defined as 132 columns by 66 rows. UnForm will scale each page to fit 2
across and 2 down on a physical page (264 columns and 132 rows). The report is printed in landscape
orientation. A box is drawn around each page, and the hline command will convert all occurrences of 3
or more dashes to horizontal lines.

cols 132
rows 66
across 2
down 2
landscape
cbox .5,.5,132.5,66.5
hline "---"

UnForm Version 5

142

ZEBRA LABEL – ZEBRA LABEL PRINTER EXAMPLE

UnForm offers an optional Zebra printer driver, which produces ZPLII code. Within the limits of the
ZPL language, UnForm produces enhanced forms for Zebra printers in much the same way as it does for
laser printer. Some key differences are: fonts are identified differently and are limited in scalability,
shading is either 100% (black) or 0% (white), and the barcode command is more extensive and capable
than the laser printer barcode command.

When executing a zebra run, it is critical to tell UnForm how large the labels are. This is done with a
special syntax on the “-page” command line option. Also, UnForm needs to know what print density is
used by the printer. This is determined by the “-p zebran” option, where n is either 6, 8, or 12 dots per
millimeter. You may need to adjust this sample command line to match your Zebra printer, as it
assumes an 8 dpmm printer and 3.25 by 5.5 inch label stock.

unform50 –i samplez.txt –f sample.rul –p zebra8 –paper 3.25x5.5

This label is scaled to 40 columns and 35 rows.

[zebra label]
detect 0,1,"Zebra Barcode"
cols 40
rows 35

The prepage code block gets the PO number, setting it into a variable po$, and removing the PO
number from the text with a set() function.

prepage{
po$=""
po$=cvs(get(2,16,10),3)
trash$=set(2,16,10,"")
}

The From and To sections draw boxes, change fonts, and re-allocate the lines of text from row 10 to row
14 with a series of text commands followed by an erase command.

From section
box 1,1,39,8,3
text 2,2,"From:",font A
font 2,3,35,6,font 0,9

To section
box 1,9.75,39,10.5,5
#text 2,10.6,"To:",font 0
text 3,11,{get(2,11,30)},font 0,12

UnForm Version 5

143

text 3,12.25,{get(2,12,30)},font 0,12
text 3,13.5,{get(2,13,30)},font 0,12
text 3,14.75,{get(2,14,30)},font 0,12
text 3,16,{get(2,15,10)},font 0,12
erase 2,11,30,5

This group of commands prints three different barcodes on the label. First, a postnet code is printed
from the zip code located at column 2, row 15, for up to 10 characters. Then a UPS maxicode barcode
is printed with SDSI’s address. Last, a code 3 of 9 code is printed using the variable po$, derived in the
prepage{} code block above.

bar codes
barcode 10,18.25,{trim(get(2,15,10))},Z,33

text 2,24,"Maxicode",font 0,10
barcode 2,25,{"999840956820000" + $0a$ + "SDSI"+ $0a$ + “2195 Talon
Drive” + $0a$ + "Latrobe, CA 95682"},D

box 17,25,22,12,3
text 18,25.75,"Our PO No (in code 39):",font A,21
barcode 20,28,{po$},3,120,2,text above

UnForm Version 5

144

PDF OUTLINE SAMPLE

UnForm supports PDF outlines (or bookmarks) when using the PDF driver. Outlines can be multiple
levels, and each outline tree can be different levels deep. UnForm assumes each outline branch points to
a page. To control the text shown in the outline, you set the variable outline$ in a prepage or precopy
code block. This variable is parsed as each page is printed. Multi-level entries are created by delimiting
the text of the levels with a vertical bar (|) within the contents of the variable.

The file sample5.txt contains the contents of a 14-page report featuring two sort and subtotal levels, as
well as grand totals and a recap page. The outline tree for this report will be based on the salesperson
(outer sort) and class code (inner sort), along with specific page entries for the report total and recap
page. As there are no detect statements, you need to specify the –r option on the command line, as
shown.

unform50 –i sample5.txt –f sample.rul –r outline –p pdf –o test.pdf

[outline]
unform50 -i sample5.txt -o test.pdf -p pdf -f sample.rul -r outline

Set the page dimensions and turn on the outline feature with the outline keyword. The default outline
title for each page is simply “Page n”, but a code block can override the outline text by setting the
variable outline$.

cols 132
rows 66
outline

The prepage code block looks on each page for the following cases, in order:
• A 3-digit salesperson number at the first column on line 7
• A salesperson subtotal heading on line 8
• A report total heading on line 8
• A recap page heading on line 2
For the first two types of pages, a two level outline entry is created (level 1|level 2 structure). For the
report total and recap pages, a single level outline entry is created.

prepage{
default outline setting matches prior page
outline$=lastoutline$

if line 7 starts with 3 digits, set 2-level outline slsp+class
if mask(get(1,7,3),"[0-9][0-9][0-9]") then \
 outline$="Slsp "+get(1,7,3)+"|Class "+get(13,7,2)

if line 8 contains this, it is a salesperson subtotal
if pos("SALESPERSON: "=text$[8])>0 then \

UnForm Version 5

145

 outline$="Slsp "+get(14,8,3)+"|Totals"

if line 8 contains this, it is a report title
if pos("*Report"=text$[8])>0 then \
 outline$="Report Total"

if line 2 contains this, it is the recap page
if pos("RECAP PAGE"=text$[2])>0 then \
 outline$="Recap Page"

lastoutline$=outline$

}

UnForm Version 5

146

PROGRAMMING FUNDAMENTALS

The prejob, predevice, prepage, and precopy subroutines (and their associated postxxx routines) open the
world of Business Basic programming to the report and form designs. With a full programming
language at your disposal, it is possible to customize and manipulate the forms, and to interact with other
applications and devices, or with the operating system.

An experienced BBx or ProvideX programmer typically performs the programming of these subroutines.
However, programmers experienced in other languages, particularly other dialects of Basic, can easily
learn the fundamentals of Business Basic and perform these programming tasks. Several of the sample
forms include some programming, and there is a complete reference guide available from the SDSI web
site. In this manual, we have provided some basic (no pun intended) information that will assist
developers experienced in other programming environments.

Statements
A statement consists of a single verb and any arguments or parameters suitable for that verb. Multiple
statements can be placed on a single line by separating them with a semicolon (;). Statements can be
preceded by a label, which consists of a label name followed by a colon. Label names must follow the
same naming conventions as numeric variables.

Variables
There are two types of variables in Business Basic: string and numeric. Variables that end in a “$”
character are treated as string variables. They can hold any amount of text data, of any ASCII character
value from 0 to 255. On ProvideX revisions prior to 5.0, strings are limited to 32767 bytes long; on
BBx, they are limited only by available workspace memory. Workspace memory is controlled by the
number of “pages” in the “-m” startup parameter found in /usr/bin/unform50 or in the MEM value of the
unform.ini file under Windows. A “page” is 256 bytes. Numeric variables can contain any number or
integer. UnForm sets precision to 10, so that up to 10 digits to the right of the decimal are maintained
accurately.

Variable names can be up to 31 letters, digits, and underscore characters, and must start with a letter.

work$, account01$, and cust_name$ are valid string variables.
cust-name$ is invalid.
amount, period_12, and six are valid numeric variables.

Arrays can be defined for both string and numeric variables. Arrays must be defined to a fixed number
of elements with a DIM statement, and array elements can then be referenced as variables. Arrays can
contain up to 3 dimensions.

dim amount[12] defines a 13-element array, a[0] … a[12].
dim x$[1:6,1:20] defines a 2-dimensional string array. The first dimension ranges from 1 to 6, the
second from 1 to 20. x$[2,20] would be a valid element in this array.

UnForm Version 5

147

The dim statement can also be used to initialize strings to a specified length. Dim a$(12), for example,
will set a$ to 12 spaces.

There are special string constructs available in both BBx and ProvideX. These are called string
templates or composite strings. Details about these constructs can be found in language manuals for
those languages.

Functions
Many functions are available in Business Basic. Most will be familiar to a Basic programmer.
Functions consist of a word, an opening parenthesis, one or more arguments, and a closing parenthesis.
The function returns a string or numeric result, which is typically used as part of an expression, or in an
assignment. Wherever a string or numeric value can be used, a string or numeric function can be used.
In addition to internal Business Basic functions, UnForm also provides some functions that perform
tasks typical to its environment.

String and numeric representation
Strings are made up of concatenated bytes. They can be represented as literals inside double quotes,
such as “Name:”, or as hexadecimal strings inside “$” delimiters, such as $1B45$ for Escape-E. They
can also be made up of combinations of literals, hex strings, string variables, and functions that return
string values. These values are combined using the “+” operator to concatenate each string together. For
example, a string containing quotes could be constructed these ways: chr(34)+”some text”+chr(34); or
22+”some text”+22, or quote$+”some text”+quote$. Since chr(34) and 22 both represent a quote
character, and it would be possible for the variable quote$ to contain the same, all these expressions can
represent the same string.

Substrings can be derived from a string variable with the syntax stringvar(start [,length]). For example,
if account$ is “01-567”, then account$(4,3) would return the value “567”. Substrings references with
positions that aren’t in the string result in errors, so care must be used, or the UnForm supplied mid()
function can be used to avoid the errors.

Numbers can be represented as integers or decimal numbers, or, like strings, can be represented as
expressions containing literal numbers, numeric variables, and numeric functions. With numbers, there
are more operators available to produce the expressions. A literal number is just a series of digits, with
an optional decimal point and an optional leading minus sign. 1995.99 and -100.433 are valid numbers.
Other punctuation, such as thousands separators or currency symbols, are invalid in a number though
they can be added when a number is formatted as a string for output.

Operators
Business Basic has the following standard operators:

+ concatenate strings or add numbers
- subtractration
* multiplication
/ division
^ exponentiation

UnForm Version 5

148

= used for assignment or to test equality
> test for greater than
>= test for greater than or equal to
< test for less than
<= test for less than or equal to
<> test for inequality
() control precedence
and boolean and in conditions
or boolean or in conditions

If Then Else
The structure of IF…THEN…ELSE statements is simple and unblocked. The IF must be followed by
an expression to test. The expression can be simple or complex, and must resolve to a single boolean or
numeric result. For numeric results, a 0 is considered false, and anything else is considered true. Once
resolved, if true the THEN clause is executed, otherwise the ELSE clause, if present, is executed.

Both the THEN clause and the ELSE clause can contain any statements, including nested IF statements.
A closing FI after a THEN or ELSE clause will terminate the conditional nature of statements following
it.

Here are some examples of IF statements:

if amount < 0 then text$=”Credit Balance”
if x$=”A” then desc$=”Acme Rental” else if x$=”S” then desc$=”Smith & Sons” else desc$=”N/A”
if testmode then dummy$=set(1,1,10,”Test Mode”) fi; goto exitsub

While Wend Loops
One of Business Basic’s looping structures is the while..wend loop. At the top of the loop is a while
condition statement, where the condition is evaluated like an IF clause. As long as the condition is true,
or returns a non-zero value, the statements up until the closing wend statement are repeated. To escape
the loop, you can use the EXITTO label verb, or set variables such that the condition is false before
executing the wend verb.

Here is a simple while/wend syntax that substitutes (“) with (‘) in a string:

x=pos(22=work$)
while x > 0

work$(x,1)=”’”
x=pos(22=work$)

wend

For Next Loops

UnForm Version 5

149

Another commonly used loop structure is the FOR..NEXT loop. A FOR statement identifies a variable,
a start value, an end value, and an optional step value. The variable is set to the start value; the loop
statements are executed until a NEXT statement is encountered; the variable is incremented by the step
value; and, until the end value is exceeded, the loop statements are repeated. To exit the loop before the
end value is reached, use the EXITTO label verb. Here is an example that would perform the same
substitution shown above (though more slowly):

for i=1 to len(work$)
 if work$(i,1)=$22$ then work$(i,1)=”’”
next i

File Handling
Business Basic is has very powerful facilities for handling files. Not only are there intrinsic keyed file
types, but also text files and pipes can be used.

If UnForm is working with an application written in Business Basic, then the intrinsic files used by the
application are available to UnForm for native access. This can provide some important benefits,
allowing an UnForm job to use data from an application that hasn’t been provided in the print stream.
For example, inventory cost could be found using part numbers as keys to an inventory file, and the
invoice cost could be calculated and placed on an internal copy of an invoice. This could be
accomplished without changing the invoice printing program, because UnForm could gather the data just
with the part numbers supplied on the invoice detail lines.

If UnForm is working with a non-Business Basic application (e.g. C, Cobol, Informix, Oracle, etc.),
there are additional means to obtain data, via ODBC on Windows or pipes on UNIX.

Opening Files

File access is performed through an open file channel. The OPEN statement opens the file on a numeric
channel, in preparation for later file access. Open(99)”customers.dat” opens the named file on channel
99. Channel numbers can range from 1 to 32767, though the operating system will typically impose a
limit on the number of simultaneous channels that can be opened. Channel numbers must be unique.
Once opened, that channel number is no longer available until closed. To avoid conflicts with channel
numbers, it is common to use a special function that returns an available channel number, UNT. Here is
a typical syntax:

cust=unt
open(cust)”customers.dat”

After that, file access verbs can use the cust variable to access the “customers.dat” file.

To open a pipe channel, you could do the following:

faxlist=unt

UnForm Version 5

150

open(faxlist)”|sqlexec ‘select cust,faxnum from customers’”

labelprt=unt
open(labelprt)”|lp –dlabels”

Reading Files

There are two verbs used for reading channels: READ, and READ RECORD. The READ verb
understands line and field separators, whereas the READ RECORD verb reads blocks of a specified size
or whole records, in the case of intrinsic keyed file types. The READ verbs accept several options,
including “key=string”, “ind=index”, “err=linelabel”, “end=linelabel”, and others. Full details can be
found the the language reference manuals. A special syntax of “err=next” is used by UnForm to simply
drop through to the next statement if an error occurs.

To read from an intrinsic keyed file, you might use one of these:

read(cust,key=custkey$,err=next)*,name$,*,*,*,*,faxnum$
read record(cust,key=custkey$,err=next)custrec$; name$=custrec$(7,30),faxnum$=custrec$(112,10)

To read from a pipe or a text file, you may not use a key= clause, so you just read sequentially through
the file:

read(faxlist,end=done)cust$,faxnum$

Writing files

You probably would not want to write to your application files, but you could well want to write to
external devices or log files. Writing is performed with these verbs: WRITE or WRITE RECORD and
PRINT. Both use a channel number and arguments to print. PRINT and WRITE terminate their values
with a line-feed character, unless a comma follows the last argument. WRITE RECORD will write a
single string variable without any termination so it is suitable for binary or blocked output.

print (logfile)”Customer: “+custname$+” printed on “+date(0,tim:”%D-%M-%Y:%Hz:%mz”)
dim block$(128); block$(1)=custname$,block$(31)=str(amount:”000000.00”); write record(log)block$

Common verbs and functions
The following list is a summary of verbs and functions that are commonly used in UnForm applications.
Note also that the section on the precopy command contains additional references that are useful for
programming code blocks. Note that all functions accept a “,err=linelabel” or “err=next” argument, and
all verbs accept the same after any parameters, to branch if an error occurs. Optional arguments are
shown inside braces {}. Note that the syntax presented is for BBx4 and PRO/5 (PRO/5 is the run-time
supplied for bundled licenses of UnForm, so this table is applicable to those users.) ProvideX syntax for

UnForm Version 5

151

many functions and some verbs is different, so you should consult with a ProvideX reference manual for
details.

ASC(string) Returns the ASCII numeric value (0-255) of the first

character of string.
ATH(string) Returns a binary equivalent of a human readable hex string.

ATH(“1B”) returns an escape character.
BIN(integer,length) Returns a binary integer representation of the specified

length. The inverse function of this is the DEC() function.
BREAK Breaks out of a loop structure. Equivalent to EXITTO

linelabel if linelabel is the line after the closing WEND or
NEXT.

CHR(integer) Returns a character string whose ASCII value is integer,
between 0 and 255. CHR(27) returns an escape character.

CONTINUE Executes the next iteration of a loop structure. Equivalent to
GOTO linelabel, if linelabel is the closing WEND or
NEXT.

CVS(string,arg) Returns a converted string according to the cumulative value
of the integer arg. Values: 1=strip leading spaces, 2=strip
trailing spaces, 4=uppercase, 8=lowercase, 16=non-printable
characters to spaces, 32=multiple spaces to single spaces.
CVS(a$,3) trims both leading and trailing spaces.

DATE(julian {,time} {:mask}) returns a human readable date and/or time, based on the
julian date (see the JUL() function), a decimal time (hour
and fraction of hour – 12.5=12:30PM), and a format mask.
The mask can contain combinations of placeholder
characters and modifiers. The placeholders are %M=month,
%D=day, %Y=year, %H=hour (24 hour clock), %h=hour
(12 hour clock), %m=minute, %s=second, %p=AM/PM.
Modifiers include z=zero fill, s=short text, l=long text.
Examples on June 30, 1999 at 1:30 in the afternoon: date(0)
returns “06/30/99”, date(0:”%Ml %D, %Yl”) returns “June
30, 1999”, date(0,tim:”%hz:mz %p”) returns “01:30 PM”.

DEC(string) Returns the decimal conversion of the binary integer in
string. The counterpart to the BIN() function. To treat
string as an unsigned integer, you should use the form
DEC(00+string).

DIM string(length {,char}) Returns a string of length size, of spaces or the specified
char character.

DIM name[dim1{,dim2{,dim3}}] Create an numeric or string array variable. Dimensions can
be simple integers, indicating an index range of 0..dim, or
two integers separated by a colon, like 1:12.

DIR(“”) Returns the current disk directory. On Windows,

UnForm Version 5

152

DIR(driveletter) will return the current directory for the
specified disk drive.

EPT(number) Returns the 10’s exponent value of number. EPT(100)=3,
EPT(12)=2.

ERASE filename Erases a file. Obviously, care should be taken to only erase
temporary work files.

EXITTO linelabel Exits a loop structure (current level only, in nested
structures) and jumps to the specified linelabel.

FBIN(number) Returns a 64-bit IEEE number in natural left to right
ordering.

FDEC(string) Returns the decimal value of a 64-bit IEEE number.
FID(channel) Returns a file identification string for the file opened on

channel. For devices, just the device name is returned. For
files, the first byte indicates the file type (00=indexed,
01=serial, 02=keyed, 03=text, 04=program,
05=directory, 06=mkeyed, etc.) You can verify a file is
a plain text file like this: test$=fid(filechan); if
test$(1,1)=$03$ then x$=”text file”.

FILL(integer{,string}) Returns a string if integer length, made up of successive
iterations of string, or spaces if no string is provided.
FILL(7,”abc”) will return “abcabca”.

FIN(channel) Returns additional file information not found in the FID()
function. A common use of this function is to determine file
size, which stored as a binary integer in the first four bytes.
To get the length of a file: x$=fid(filechannel);
length=dec(00+x$(1,4)). Additional potentially useful
information can be found as well. See the language
reference manual for more details.

FOR numvar=start TO end {STEP
increment}

Initiates a loop, using a numeric variable initialized to start
the first pass through the loop, incrementing by 1 or the
specified increment, which can be negative, until the
variable exceeds (or goes below in the case of a negative
increment) end. The statements following this command,
until a NEXT numvar statement, are executed. The loop can
be broken from with the BREAK or EXITTO verbs.

FPT(number) Returns the fractional portion of a number. FPT(100.66)
returns .66.

GOSUB linelabel Jumps to the specified linelabel. Statements will be
executed until a RETURN verb is encountered, and
execution will return to the statement after the GOSUB.

GOTO linelabel Jumps to the specified linelabel.
HTA(hexstring) Returns a human readable hex string of hexstring.

HTA(CHR(2)) returns “02”. HTA(“0”) returns “30”.
IF test THEN statement(s) {ELSE
statement(s)} {FI}

Conditional execution of statements. test must be a simple
expression that produces a boolean or numeric result

UnForm Version 5

153

(0=false, non-0=true). Multiple statements can follow the
THEN or ELSE clause by separating them with semi-colons.
Statements following a FI are executed without regard to the
condition of the last IF test. Nested IF statements are
accepted without practical limit.

INFO(num1,num2) Returns text information, sometimes in binary integer form,
of various system or run-time elements. Common uses:
INFO(0,0)=operating system name, INFO(0,1)=operating
system version, DEC(INFO(3,0))=task ID, INFO(3,2)=user
ID, INFO(3,3)=user name. Many other information strings
are available. See the language reference for a complete list.

INITFILE filename Initializes an existing file. Note that on UNIX, permissions
will be set based on the user’s umask setting. You can use
the SCALL() function to execute a chmod command if
necessary. Use caution: this verb should only be used on
temporary work files.

INT(number) Returns the integer portion of a number. INT(99.645)=99.
JUL(year,month,day) Returns the julian integer of the specified date elements.

The year should be specified, if possible, as a 4-digit year.
Otherwise the function will assume a century of 1900. The
complement of this function is the DATE() function.

LEN(string) Returns the length of the string.
LET var=value{,var=value…} Assigns variables to values. The variables can be numeric,

string, or array variables. The values can be any compatible
numeric or string expression. LET is an implied verb is the
statement uses the assignment syntax.

MASK(string{,regexpr}) Returns the position where a regular expression pattern was
found in the string, or 0 of not found. If regexpr is not
specified, then the last regexpr used is re-used. This
provides a performance benefit for repeated uses of the same
regexpr. The length of the string matched is returned by the
TCB(16) function.

MAX(num{,num…}) Returns the largest number found in the list of nums.
MIN(num{,num…}) Returns the smallest number found in the list of nums.
MOD(num1,num2) Returns the remainder of dividing num1 by num2.

MOD(4,3)=1, MOD(6,3)=0.
NUM(string) Returns the decimal value of a string, assuming the string is

a well-formatted value containing digits, a single optional
period (decimal point), and a single optional leading hyphen
(minus sign). Other punctuation or characters will return an
error. NUM(“-12.5”) returns 12.5. NUM(“1,456”) results
in an error.

ON integer GOTO|GOSUB
linelabel{,linelabel…}

Branches to one of the indicated line labels based on the
value of integer. If integer is 0 or less, branch to the first
label, 1 to the second, 2 to the third, and so on. The last

UnForm Version 5

154

label is used for interer values greater than that of the last
label.

OPEN(integer{,err=linelabel|next}{,isz=i
nteger}) string

Opens the file named in string on channel integer. To open
a file in binary mode regardless of the file type, you may
optionally (required on ProvideX) specify a block size with
the “,isz=integer” option.

POS(string1 relation string2 {,increment
{,occurrence}})

Scans string2 for a substring having the specified relation to
string1. POS(“B”=”ABC”) returns 2. POS(“B”<”ABC”)
returns 3. The string can be searched in even character
increments: POS(“02”=”002002”,2) will return 5, since the
second and third characters, though matching the search
string, are not located at an increment boundary. If the
string is not found, or the requested relation, increment, and
occurrence cause the string to not be found, the function
returns 0.

PRINT(channel) value {,value…}{,} Prints a series of values, numeric and/or string, to the file
channel specified. A linefeed character is added to the
channel unless the last character of the statement is a
comma.

READ{ RECORD}(channel {,options})
variable {,variable…}

Reads data from the specified channel into the specified
variables, looking for field terminator characters to delimit
variables. Field terminators include linefeeds, carriage
returns, and nulls. Valid options include “err=linelabel”,
“end=linelabel”, “siz=blocksize”. “key=keystring”,
“ind=index”, and “dom=linelabel”. For intrinsic keyed files,
use the key= or ind= options to read specific records. For
text files, use READ to process linefeed delimited files, but
be aware that carriage return characters act as field
separators. To read text files as binary files, use READ
RECORD with a “siz=” option.

REM Place a non-executing remark line in the code. In UnForm,
you can also use a # character.

RETRY Retry the statement that caused the last error branch to be
taken.

RETURN Return from a GOSUB branch.
RND(integer) Return a pseudo-random number. The random number

sequence can be reseeded by providing a negative integer, so
it is common at startup (like in a prejob code block) to seed
the RND function with a variable number, such as
MOD(JUL(0,0,0)+INT(TIM*10000),32000). The integer
can be a number from –32767 to +32767. Positive numbers
return a random integer from 0 to integer-1. If integer is 0,
a random number between 0 and 1 is returned.

ROUND(number,precision) Return number, rounded to precision.
ROUND(1.566,2)=1.57. ROUND(100.83,0) returns 101.

UnForm Version 5

155

SCALL(string) Executes the operating system command in string. Returns
the result returned by the operating system. Use this
function to interface with the operating system or external
commands. This is an alternative to opening a pipe to a
command.

SETERR linelabel To provide a generic error handler to catch errors not
trapped by err=linelabel branches in functions and verbs.
UnForm also adds error handling code to code blocks, but
will report errors on a warning page following the print job.

SGN(number) Returns a 1, 0, or –1, depending on the sign of number.
STBL(string1{,string2}) Returns and/or sets the global string table value named

string1. If string2 is present, then the string table is set to
string2. In both cases, the value is returned. If string1 has
not been set, STBL(string1) will result in an error (trappable
with err=linelabel, of course).

STR(number{:mask}) Convert a number to a string, optionally formatted with a
mask. The mask can contain any text, plus the following
placeholder characters: 0=zero filled digit, #=space filled
digit, “.” decimal point, “,” thousands separator, -, (,), and
CR for negative numbers. STR(99.91:”0000.00”) returns
“0099.91”. STR(19093.255:”###,##0.00”) returns
“19,093.26”.

STRING filename{,err=label} Creates a text file of the name specified. Use either a string
variable or expression, or a quoted literal string. Examples:
STRING “/tmp/test.txt” or STRING
“/tmp/”+str(dec(info(3,0)))+”.txt”,err=next.

TCB(integer) Returns task control information. Commonly used integer
values include: 10=last operating system error code and
16=length of MASK() function match.

TIM Numeric variable that holds the decimal time of day, from
0.0 to 23.99.

UNT Numeric variable that holds the next available file channel
number.

WHILE condition…WEND A looping construct that performs statements between
WHILE and WEND statements as long as condition is true
or non-zero.

WRITE Same syntax as PRINT.

Error Codes
When code is executed, any errors that are not handled by err=label branches are reported as warnings
on a job trailer page. Common error codes are shown in the following table.

Error Number Description
1 End of record error, which may occur on a buffered disk write operation if the data

UnForm Version 5

156

Error Number Description
is too long for the record buffer. This error is rare in UnForm jobs, but could occur
if output is being printed to a printer alias defined in the config.unf file.

2 End of file, which may indicate a disk full message, or a file that is too large for the
operating system to handle.

10 An invalid file name was given.
11 A missing key on a keyed read operation, or a duplicate key on a keyed write

operation with a DOM= option.
12 A missing file error on a file open operation, or a duplicate file error on a file

creation operation.
13 Normally a file permission error.
14 A file channel conflict or locking conflict error.
16 Out of resources, such as file handles. If this error occurs, it is often due to opening

too many files. This can easily occur if files are opened but not closed in a loop or
call construct.

18 Normally a file or directory permission error.
20 Syntax error. Common causes include mismatched parentheses, incorrect spelling

of verbs or functions, or missing or incorrect function arguments.
21 Missing statement, as referenced in a ERR=label, or a goto or gosub branch.
26 String/Number mismatch, where a string variable or literal is used where a number

is expected, or visa versa.
27 Stack error, such as a return without a gosub, or a wend without a while.
28 For/Next error, such as executing a next without an associated for.
29 Mnemonic error. Mnemonics are pre-defined codes inside single quotes, such as

‘FF’ or ‘LF’. Therefore, single quotes are not valid as string literal indicators; only
double quotes are.

30 Corrupt program, which indicates that UnForm itself is probably corrupted, unless
this error occurs on a call statement referencing an external program.

31 Out of data memory or program memory. If it is data memory, you can adjust the
MEM= parameter in /usr/bin/unform50 (Unix) or unform.ini (Windows) to increase
the dataspace memory allocation.

33 Out of system memory. If this occurs, look for recursive coding problems.
36 Mismatched arguments on a call statement.
40 Numeric overflow, normally caused by a divide by zero.
41 An integer overflow or range error. Some functions require integer arguments, so a

floating point number will cause this error. Also, some functions require integer
arguments to fall in a certain range, and this error will occur if the function is
passed a value outside of the valid range.

42 Array subscript error.
43 Masking error.
46 String length error.
47 Substring error, such as a starting position of 0 or a length greater than the length of

the string.

UnForm Version 5

157

EMAIL INTEGRATION

UnForm includes a copy of the MailCall utility that enables emailing of attachments from within
UnForm. This is most often used to send PDF files. It can be used to email laser printer (PCL5) files, as
long as you know the email recipient has a compatible printer that supports any of the fonts used in your
documents. If you use CGTimes, Courier, and Univers fonts, then any PCL5 laser print device should be
able to properly print documents, as long as the user can copy the file directly to the printer. Beginning
with version 5.0.05, MailCall 2.0 is the included release.

Configuration

To configure MailCall, you need to edit the mailcall.ini file, using any text editor. If you don’t have a
mailcall.ini file, then you can rename mailcall.sds to mailcall.ini. The following notes provide details
about each option.

Native Sockets or External Mailer
If you are running ProvideX, or revision 2.2 or higher version of PRO/5 or Visual PRO/5 with ‘alias N0
tcp’ defined in your config.bbx file (you can specify the Nx alias to use, if necessary, in the
stbl(“$mcalias”)), then MailCall can use native tcp/ip sockets to communicate with the SMTP server. In
this case, there is no need to configure a mailer= line.

UnForm Notes: The config.bbx file used by UnForm is called config.unf and is located in the UnForm
directory. It sis supplied by default with the proper N0 alias device. The bundled versions of UnForm
5.0 include a version of PRO/5 or Visual PRO/5 that is 2.2 or higher and therefore supports native
sockets.

If you do need an external mailer, note the following:

• On Unix, MailCall is supplied with the Perl program mailcall.pl, which is a SMTP client program

designed to accept a submission file and interface with a SMTP server. In order for this program to
operate, you must have a Perl interpreter. You can verify the existence of the Perl program with the
Unix command ‘type perl’. It should return the location of Perl as found in the system PATH
variable. If your system is missing this free scripting tool, you can probably find a binary
distribution on http://www.cpan.org. MailCall can also interface with sendmail or mmdf if one of
those products is configured and operational.

• On Windows, we have supplied a simple Win32 executable called “mailcall.exe”, which accepts the

submission file and communicates with the SMTP server configured in the mailcall.ini file.

Perhaps the most important element of the configuration is to ensure the system that executes MailCall
has connectivity to your SMTP mail server. This may be an in-house system, or it may be hosted by
your Internet Service Provider. A pretty foolproof way to test this is to telnet to port 25 on the mail

UnForm Version 5

158

server from your system (telnet hostname 25 from either Unix or a MS-DOS Command Window). If
you get a non-error response, MailCall should work.

server=smtp-server
This contains a reference to the IP address or domain name of the SMTP email server. This is used by
the native socket interface, the mailcall.exe program, and the mailcall.pl program. If your mailer=
setting uses sendmail or mmdf, this value is not used.

port=port-number
When native sockets are used, the default SMTP port of 25 can be overridden by setting a port-number.
Normally, this should not be required.

from=email-address
If no dat.from$ address is provided during the CALL to mailcall, this address is used instead.

hostname=hostname
If the environment does not provide a system name that is valid for the SMTP server, you can specify a
value here. If no value is specified, then MailCall will determine the system hostname with the Unix
“hostname” command, or on Windows with the INFO() function in Visual PRO/5 or the NID variable in
ProvideX. This element is only used by the native socket support.

login=username
password=password
If the SMTP server requires authentication, then you can define a default username and password with
these elements. It is also possible to specify a username and password within the CALL interface.
These values, if required, are supplied by the mail administrator, and must be supplied exactly as
specified or you will probably get an authentication error and be unable to send mail.

mailer=commandline
If MailCall will not use internal sockets, then this line configures how MailCall actually sends the mail.
If you are running under ProvideX or PRO/5 or Visual PRO/5 revision 2.2 or higher with a proper alias
line defined, MailCall will use internal sockets and this line does not need to be configured. When
required, BBx executes this command line via the SCALL() function. There must be a % character in
the command line, which MailCall substitutes with the email submission file at run-time.

If no mailer value is set (all lines are commented) and a mailer is required, then a default mailer line is
constructed, using “perl mailcall.pl % >mailcall.pl.log 2>mailcall.pl.err” on Unix or “mailcall.exe %” on
Windows. The proper path to the mailer is automatically generated. In other words, if you have Perl or
are on Windows, there is generally no need to configure a mailer= line.

On Windows, commandline should be set to the full path for mailcall.exe plus the % argument, such as
‘c:\mailcall\mailcall.exe %’. Be sure to use DOS-style backslashes rather than forward slashes.

UnForm Version 5

159

On Unix, you will probably want to use mailcall.pl. mailcall.pl should be in the same directory as the
mailcall program, and mailer should be set to the full path to mailcall.pl. The commandline should be
‘perl /usr/mailcall/mailcall.pl % >/dev/null’ (adjust the directory path as necessary). Perl, of course,
must be installed on your system for this to work. To enable logging, change the “>/dev/null” to
“>pathname”, and the conversation that mailcall.pl has with the SMTP server will be logged to that file.

If you use sendmail, the commandline ‘/usr/lib/sendmail –t <%’ should work, as it instructs sendmail to
scan stdin for addresses.

If you use mmdf, then the commandline ‘echo $LOGNAME >%2; cat % >>%2; /usr/mmdf/bin/submit -
uxto,cc* <%2; rm %2’ is used to submit email messages. The command line argument “-uxto,cc*”
instructs submit to scan for To: and Cc: headers for addresses.

Note that mmdf doesn’t support Bcc: headers, while the other three methods do.

timezone=zone
Internet mail must include a date and time header; a properly formatted time will include your time zone.
On Windows, the zone is added to the date and time header in the submission file. On Unix, the
timezone is determined from the date command.

charset=charsetname
The default character set in Internet email is “us-ascii”. With this setting, it is possible to override this
default for text elements of an email that includes attachments, including the body text itself.

Most configuration options have equivalent variables in the CALL string template. If you define values
in the template, they override the equivalent values in the configuration file.

Implementation
Implementing MailCall requires the use of code blocks to establish temporary output files and then the
execution of MailCall itself.

Here is a sample PDF rule file that can be used to email a PDF document. Since the PDF driver can only
be used to produce one PDF file at a time, there is only one file to worry about.

[mailpdf]
cols 80
rows 66

prejob{
set output file to a unique name using process ID
note the pdf driver only allows output changes in prejob
output$=”/tmp/email”+str(dec(info(3,0)))+”.pdf”

UnForm Version 5

160

}

postdevice{
call "/usr/unform/mailcall.bb",1,x$,""
x.to$="someone@somwhere.com"
x.subject$="PDF Report attached"
x.msgtxt$="Here is a sample PDF file.\n"
x.attach$=output$
x.from$="sdsi@synergetic-data.com"
call "/usr/unform/mailcall.bb",0,x$,""
erase output$
}

Here is a slightly more complex example, designed to email the second copy of a PCL document. PCL
allows output to be split in the middle of the job, so this technique would work in a batch run where a
document reference number is used to define the output name. This sample assumes the report will
contain the email address at column 1, row 1 of each document.

[mailpcl]
cols 80
rows 66
copies 2

prejob{
initialize mailer$ template
call "/usr/unform/mailcall.bb",1,mailer$,""
}

precopy{
set copy 2 output to document number plus extension
if copy=2 then output$=get(70,6,6)+”.pcl”
}

postdevice{
whenever the document number changes, this routine is executed
if copy<>2 then goto skip_mail
mailer.to$=trim(get(1,1,40))
mailer.subject$="Report attached"
mailer.msgtxt$="Here is the report you asked for. Copy it to your laser printer.\n"
mailer.attach$=output$
mailer.from$="sdsi@synergetic-data.com"
call "/usr/unform/mailcall.bb",0,x$,""
erase output$
}

UnForm Version 5

161

MailCall Reference

CALL “mailcall.bb”, mode, dat$, errmsg$

For ProvideX, use “mailcall.pv”. Note that on Windows, do not call mailcall.exe directly. The
mailcall.bb and mailcall.pv programs invoke mailcall.exe when required.

Arguments:

mode is an integer value that controls how MailCall interprets or returns data in the dat$ argument. The
following are valid mode values:

 0 Send mail based on data in string template dat$
 1 Return a string template suitable for mode=0 in dat$
 2 Return version information in dat$

For modes 0 and 1, dat$ is a string template in the format:

from:c(1*=0),to:c(1*=0),cc:c(1*=0),subject:c(1*=0),otherhead:c(1*,msgtxt:c(1*=0),attach:c(1*=0),statu
s:n(1*=0),forcebase64:n(1*=0),forcenotify:n(1*=0),bcc:c(1*=0),bodymime:c(1*=0),charset:c(1*=0),tim
eout:n(1*=0),statuspause:n(1*=0),dialog:n(1*=0),login:c(1*=0),password:c(1*=0),logfile:c(1*=0),timez
one:c(1*=0),charinterface:n(1*=0),logdata:n(1*=0)”

To provide for additions to this base template, you should always use a single CALL using mode=1,
which will return a usable template in dat$.

For mode 2, dat$ returns a printable string that describes the version and license status.

Here is a description of each template field:

dat.from$ contains the sender’s email address. This value defaults to what is specified in the
“from=address” line in mailcall.ini

dat.to$ contains one or more email addresses delimited by commas. Note that if multiple addresses are
desired, it is more common to place additional addresses in the cc$ field. Each address should be
structured in one of two ways: name@domain or “text name” <name@domain>. It is important that if
any data is present other than the plain internet email address, that the internet address be enclosed in
angle brackets <>.

dat.cc$ contains zero or more carbon copy addresses. Multiple addresses must be delimited with
commas. Address formats are the same as for dat.to$, above.

UnForm Version 5

162

dat.bcc$ contains zero or more blind carbon copy addresses. Multiple addresses must be delimited with
commas. A blind carbon copy address receives a copy of the email, but the Bcc: header is removed from
the submission, so no other recipients know of the Bcc: recipients.

dat.subject$ contains a single line of subject text, describing the message content.

dat.otherhead$ contains additional mail headers, should they be necessary. The rfc822 specification
allows for user defined headers starting with the characters “X-“, in the format of “X-name: value”.
Each header line should be suffixed with a CRLF (or LF) delimiter ($0D0A$). There must be no blank
lines in this value, and all lines should have a proper header structure of ‘name <colon (:)> <space>
value’.

dat.msgtxt$ is plain text for the message body. It may contain line breaks delimited with CRLF (or LF)
sequences. Lines should not exceed 900 characters without line breaks. You may also use Unix-style
line break escapes (\n sequences) instead of binary CRLF characters.

dat.bodymime$ can be used to define an alternate body text (dat.msgtxt$) MIME type. The default is
“text/plain”, but it is common to prepare message body text as HTML, in which case you can specify
dat.bodymime$=”text/html”. This must be a well-known standard value (see the mime.typ file included
with MailCall), and should be of the text/* family.

dat.attach$ contains one or more file names to attach to the message, delimited with commas. If this
contains names, then MailCall will produce a MIME-encoded message, with the message body as plain
text, text-style files (MIME types such as text/plain or text/html) as quoted-printable attachments, and
other files as base64-encoded attachments.

dat.status, if set to 1 (or any positive value), will cause a status window to display as the email is
processed. This flag is honored when MailCall uses native sockets or the external mailcall.exe program.
When native sockets are used, the status window operates for both generation and SMTP server
submission. When the external Windows mailer is used, it only operates for submission. External Unix
mailers do not support this flag.

For logging on Unix installations, if you are using mailcall.pl, do this:

• Verify the setting of $log=1 in mailcall.pl near the top of the program
• Direct stdout to a file or the screen by modifying the mailer= line: something like ‘perl

/usr/mailcall/mailcall.pl % >/tmp/mailcall.log.’ or just ‘perl /usr/mailcall/mailcall.pl %’.

dat.statuspause can be set to the number of seconds to pause before closing the status window after the
SMTP conversation is complete. This can help the user see the process completion without a quickly
flashing window. This flag is only honored when MailCall uses native sockets and the dat.status flag is
set.

dat.dialog, if set to 1, will invoke an email entry window for the user. The window is GUI or character-
based, as appropriate, and provides the user with the ability to change any of the following values from

UnForm Version 5

163

the template: dat.from$, dat.to$, dat.cc$, dat.bcc$, dat.subject$,dat.attach$, dat.msgtxt$. See the
Dialogs section for more details.

dat.forcebase64, if set to 1 (or any non-zero value), will cause MailCall to always encode files with
base64 encoding. By default, files whose MIME type is text are encoded using Quoted-Printable
encoding.

dat.bodymime$, if set, will override the default text/plain MIME type used for the message body.

dat.charset$, if set, will override the charset default defined in the mailcall.ini configuration file, or the
default of “us-ascii”, when no setting is defined. Charsets are associated with any text body or
attachment.

dat.login$, dat.password$, if set, and if the SMTP server requires authentication, are used for the
AUTH LOGIN authentication process. These values would be provided by the ISP or mail server
administrator, and must be provided exactly as specified. These values are honored when MailCall uses
native sockets or the mailcall.exe or mailcall.pl mailers.

dat.logfile$, if set to a pathname, will trigger detail logging of the SMTP conversation when MailCall is
using native sockets. The file will be erased and created each time MailCall is CALLed. Be careful not
to use pathnames that should not be erased.

dat.timezone$, if set, will override the normal time zone value that is applied to the Date: header. The
default time zone comes from either the timezone= value in mailcall.ini (for Windows) or the Unix ‘date
+%Z’ command. Use this to set a relative GMT value, like “-0800” for PST.

dat.charinterface, if set to a non-zero value, will force character-mode for the dialog and status window
displays, even in a GUI environment. The status window display affected is only the internal version
used when native sockets are utilized, not the status window displayed by the mailcall.exe mailer.

dat.logdata, if set to a non-zero value, and if the dat.logfile$ is defined, and if a native socket is in use,
will cause the mail submission file data to be logged to the log file specified in dat.logfile$. The default
behavior is to only log SMTP conversation information, and suppress the message data.

errmsg$ will contain the text of an error message, if one occurs.

UnForm notes: When UnForm is running on a Unix system, there is no usable terminal device
associated with it, even if run from the command line. Therefore, the user interface options of MailCall
are not available. This is not the case on a Windows installation.

UnForm Version 5

164

NESTED RULESET EXECUTION

There are cases when it is helpful or necessary to use nested executions of UnForm from within a rule
set. For example, since the PDF driver can only create a single output file per input stream, a nested rule
set can be used to split a print job into multiple documents. Another example might be to combine
collated and non-collated copy sets from the same job, since a single rule set must be set to one or the
other mode.

In order to execute a nested rule set, first design the rule set(s) needed for the final output, just as you
would any other rule set. After that, you need to design a rule set that does nothing more than track and
store the input stream and execute UnForm jobs as needed. The input stream is stored for each page in
the text$[] array.

For example, this rule set will execute a secondary copy of UnForm for each page of the print job, and
store a pdf file based on the document number on that page. The example prints one page at a time
through the “invoice” rule set in the imaginary rule file “acme.rul”.

[primary]
prepage{
create PDF file from document number
document_id$=trim(get(70,6,8))
secondary=unt
open(secondary)“|unform50 –f acme.rul –r invoice –p pdf –o /archive/invoices/”+document_id$+”.pdf”
for line=1 to 66
 print(secondary)text$[line]
next line
close(secondary)

don’t print anything from this ruleset
skip=1
}

On Windows, or when running with a ProvideX run-time, you can create text files and then use the
SCALL function (SYS on ProvideX) to execute the secondary task, rather than a pipe. Use the STRING
command (SERIAL on ProvideX) to create text files.

Note that when you run a secondary copy of UnForm, a second user-slot is used by the run-time engine,
so you may need to license some extra users to account for this.

UnForm Version 5

165

HTML OUTPUT

UnForm provides an optional capability to produce HTML files from reports, using a processing engine
that is similar to that used for laser printer output. Using this capability, users can convert their standard
text-based reports into HTML documents, which are suitable for viewing with Web browsers such as
Netscape Navigator and Communicator, and Microsoft Internet Explorer.

Reports can be converted in real-time, as part of a CGI or ASP procedure that responds to a browser
request to generate a report, then format it as HTML. Or reports can be converted with a periodic batch
process, such as a nightly procedure that produces various reports, then converts them all to HTML for
viewing the next day.

Even without a rule set, UnForm can streamline text reports by producing plain text pages with
horizontal rules at the end of each page. These are constructed using HTML templates, so standard
company headers and footers can be applied even to reports that are not enhanced via a rule set.

UnForm Version 5

166

CREATING HTML

UnForm will create HTML output if you specify “-p html” on the command line. Given this parameter,
and with no “-f rulefile” parameter, UnForm will look for the “html.rul” file rather than the default
“unform.rul” file used for printer output.

By default, the HTML output is generated to standard output (on UNIX only), but it is normally
preferable to specify an output file, such as “-o /usr/internet/docs/reports/aging”. UnForm can then build
the reports with varying styles in stages, and a browser can view interim results as soon as the first page
is generated. UnForm will add a “.htm” extension automatically to the output file. UnForm will also
create additional files depending on the style of the report. For example, if a table of contents is
generated as a separate document, then the base file (aging.htm in the above example) will be the table
of contents, and additional files will be generated for the pages of the report (aging.page.htm).

A sample command, therefore, might look like this:

unform -i aging.txt -o /usr/internet/docs/reports/aging -p html -f ourhtml.rul

As HTML structure is very different from that of laser printers PCL, HTML rule sets are very different
from printer rule sets. UnForm uses HTML table structures to format pages. These structures have a
defined hierarchy of rows, cells and data, with attributes applied to either cells or data. HTML rule sets
follow this structure in that you define rows, then within rows you define cells, and then within cells you
define the attributes of the cell and text.

The HTML output that UnForm produces can be one of several styles. The rule set options used to
trigger the style are shown in parentheses:

• The simplest form is that of one document with all the pages sequentially created as tables. If no

output file is specified (-o filename), this is what UnForm will produce regardless of any style
options you specify.

• The output can be produced in one file, with a table of contents at the top of the file (toc=y or toc=l,
multipage=n). As each page is generated and appended to the file, the table of contents is updated
and inserted at the top. The table of contents consists of descriptions linked to the individual pages.
The descriptions default to “Page number n”, but can be created in page code blocks. Additionally,
the table of contents can be created as a vertical column (toc=y), or as a bullet list (toc=l).

• The output can be produced in multiple files (multipage=y), with the table of contents being the
primary one, with links to each page as a separate HTML document.

• The output can be produced as frames (frame=y), with the table of contents in one frame, and pages
in the other. The target pages can be stored in a single document, or in individual documents.

Note that all the options but the first require that a table of contents be maintained as each page is
generated. In order to construct an updated document as each page is generated, UnForm must generate
temporary files with which to build the HTML required. The filename specified by the “-o” option is re-

UnForm Version 5

167

created as each page is completed. Therefore, if standard output is generated rather than output files,
only the first style can be produced.

This interim generation of files means that the HTML output can be viewed as soon as the first page is
generated. This can be very helpful when large reports are being formatted in real-time.

UnForm Version 5

168

HTML CONFIGURATION

When generating HTML documents, UnForm uses several configuration elements to structure the
output. Most of these are created in UnForm’s parameter file, which is named “ufparam.txt”. Note that
you can create a custom parameter file for your site that will not be overwritten during an update of
UnForm by copying “ufparam.txt” to “ufparam.txc”. Then make any changes to the custom version.

A section in the configuration file headed by “[html]” controls HTML configuration. This will look like
this:

[html]
page=page.htm
toc=toc.htm
both=both.htm
frame=frame.htm
pagenum=Page number
imagelib=
imageurl=
complete=Report Complete
incomplete=Report not complete (reload page to view again)

The following table describes each parameter:

Element Description
page=filename
toc=filename
both=filename
frame=filename

These elements point to HTML template files in
UnForm’s home directory. These files are used by
UnForm based on the style of output being generated.

To create custom templates for your site, you should
copy each file to some other name, modify the file
names identified in these four elements, and edit the
templates for your needs.

See “OUTPUT TEMPLATES”, below, for more
information.

colwidth=text The default column cell width is text. This can be a
pixel value, such as “colwidth=9”, or any other value
accepted by a <td width=value> tag in HTML. If no
value is specified, UnForm uses “2em”, which indicates
2 half-characters, based on the average width of a
character in the default font. This value can also be
specified for individual reports using the colwidth
keyword in a rule set.

pagenum=text This text is used to generate the default table of
content’s values. A space and the page number follow

UnForm Version 5

169

Element Description
the text.

imagelib=directory This points to a directory where image files are
physically stored on disk. If any column definition has
an option indicating it contains image file names, then
the files in the column are searched for first as named,
and then in this directory. If the image can be found,
then the image tag can be generated with width and
height parameters, which normally speeds the page
rendering speed by the browser.

imageurl=url-prefix When image tags are generated in a column, the url-
prefix is placed in front of the file name. This allows the
Web server to map the name to a physical location on
the server.

complete=text
incomplete=text

One of these values is placed in the “$status” global
string at the end of each page, depending on whether the
job is complete or not. You can then place the value in
the HTML template files by embedding the tag
“[$status]” in the template.

UnForm Version 5

170

HTML OUTPUT TEMPLATES

As companies develop Internet and Intranet strategies, they should employ standard formatting
conventions to their HTML documents. HTML-formatted reports should likewise follow these
conventions, so UnForm supports the use of HTML template files.

UnForm looks for these files in the UnForm directory, each named in the parameter file “ufparam.txc” or
“ufparam.txt”. UnForm is distributed with a standard parameter file and standard HTML template files.
To customize these for your site, copy “ufparam.txt” to “ufparam.txc”, then copy the template files to
new names and reference those names in the new “ufparam.txc” file.

The names to use are specified in the “[html]” section of the parameter file, and are coded as
“toc=tocfilename”, “page=pagefilename”, “both=bothfilename”, and “frame=framefilename”. In each
of these files, place the text “[$toc]” where the table of contents should be placed, and “[$page]” where
the page table(s) need to be placed. In the case of a frame template, the two markers are used for
placement of URL links to the table of contents document and the page document(s), respectively.

UnForm determines which template files are used based on the style being used for the output. If there
are separate table of contents and page documents, then the tocfilename and pagefilename are both used.
If the table of contents and the pages are in the same document, then the bothfilename is used. This file
should contain both [$toc] and [$page] tags. If frame output is used, then the framefilename is used for
the primary document, and the tocfilename and pagefilename files are used for the target documents.

In addition to the required [$toc] and [$page] tags, you can also reference other pre-defined tags: [$title],
[$date], [$time], and [$status], as well as any global strings that you define in prepage{} or prejob{}
code blocks. These global strings, generated by the STBL() or GBL() functions, are embedded in the
document by placing the name in square brackets anywhere in the template.

One special note: if you wish to customize the date and time masks used by UnForm, set DATEMASK$
and/or TIMEMASK$ in the prejob{} code block to the desired format based on the BBx DATE()
function.

The default HTML template for a page (page=filename) looks like this:

<html>
<head>
<title>[$title]</title>
</head>
<body bgcolor=#e0e0e0>
<h3><center>[$title]</center></h3>
<hr>
[$page]
<hr>
<center><small>
©1997 by Synergetic Data Systems Inc.

All rights reserved.

UnForm Version 5

171

</small></center>
</body>
</html>

The default template for an independent table of contents (toc=filename) looks like this:

<html>
<head>
<title>[$title]</title>
</head>
<body bgcolor=#e0e0e0>
<center>
<h3>Table of Contents</h3>
[$title]
</center>
<hr>
[$toc]
<p>[$status]
<hr>
<center><small>
©1997 by Synergetic Data Systems Inc.

All rights reserved.
</small></center>
</body>
</html>

The default template for a combined style (both=filename) looks like this:

<html>
<head>
<title>[$title]</title>
</head>
<body bgcolor=#e0e0e0>
<h3><center>[$title]</center></h3>
<center>[$toc]</center>
<hr>
[$page]
<hr>
<center><small>
Run on [$date] [$time]<p>
©1997 by Synergetic Data Systems Inc.

All rights reserved.
</small></center>
</body>
</html>

The default template for a frame style (frame=filename) looks like this:

<html>
<head><title>[$title]</title></head>
<frameset cols="25%,*">

UnForm Version 5

172

 <frame name="toc" src="[$toc]">
 <frame name="page" src="[$page]">
</frameset>
</html>

UnForm Version 5

173

HTML RULE SETS

Like PCL rule sets, HTML rule sets are stored in a text file. Each set is headed by a unique name in
square brackets:

[AgingReport]
keywords…

UnForm selects a rule set to use based on either the “-r ruleset” command line option, or detect
keywords in each rule set. Detect keywords cause UnForm to scan the first page of input, then search
for a match where all detect keyword(s) for a given rule set match the contents of the page.

Once a rule set is selected, UnForm begins processing each page of text using the rules specified. Each
page is first stripped of any PCL escape sequences so that just text remains, then the array of text rows is
converted to HTML based on the rules. This HTML is then placed in the output according to the style of
output defined by the rule set.

If no rule set is selected, then UnForm will process each page as plain text, using HTML <pre> and
</pre> tags, with horizontal rules between pages (where form-feeds occur in the input).

The following keywords are identical in use and function with printer rule sets:
• cols
• const
• detect
• page
• rows

The hline and vline keywords are identical, except that they always perform an erase of the horizontal
and vertical lines found.

Keywords unique to HTML generation are defined on the following pages.

UnForm Version 5

174

BORDER

Syntax

border=value

Description

The tables generated by UnForm for each page will normally have borders, and will therefore set the
table border option to 1: <table border=1 ...>. If you would prefer a different border setting, define it
with this keyword.

See also the otheropt and width keywords.

UnForm Version 5

175

COLDEF

Syntax

1. [coldef | ccoldef] col, cols, options

{ codeblock }

2. coldef “text | ~regexpr”, coloffset, cols, options
{ codeblock }

3. coldef “text | ~regexpr”, coloffset, “to-text | ~to-regexpr”, to-coloffset options
{ codeblock }

Format 1 defines an absolute column region. coldef 30,21 for example, would define column region
from column 30 for 21 columns (30-50.) If the “ccoldef” format is used, then col is the starting column,
and cols is the ending column. ccoldef 30,50 would define the same region as above.

Format 2 defines a region based on a search for a starting point. For each text value or regexpr (regular
expression) found, the region will begin at the column coloffset from the point found, and extend for cols
columns. For example, coldef “Customer total”,-1,52 will create the region from 1 column before the
occurrence of “Customer total”, and extend the region for 52 columns.

Format 3 defines the region based on two searches, one to find the starting column, one to find the
ending column to the right of the starting point. In both cases, the column position is adjusted for the
offset. coldef “Current”,-1,”30-Days”,-1 would define a region starting one column before the word
“Current”, extending to one column before the word “30-Days”. If just the first string is found, then all
columns from there to the last are specified. If just the last string is found, then all columns from the
first through there are specified. For this reason, be sure that any absolute column regions are specified
first.

Description

Column definitions are used to define columns within a row definition. Each column definition
becomes a table cell (<td>…</td>), with each row in the column being separated by a line break (
).
There can be up to 255 column definitions within any given row definition. Any given column will be
formatted based on the first coldef keyword that applies to it. Columns not so defined will be displayed
as mono-spaced text, using the HTML <pre> and </pre> tags.

Each column definition can define attributes that will apply to the text and cell formatting, and
optionally can have a code block associated with it to add custom Business Basic coding to the data in
the column.

UnForm Version 5

176

Options are comma-separated lists of words and parameters. The options available in the column
definition include:

Option How it gets applied
bgcolor=#rgb,
bgcolor=color

Cell gets a bgcolor=value attribute to control the
background color. The color can be expressed as a #rrggbb
hexadecimal value or as a color name supported by the
target browser, such as red, blue, white, etc.

Blink Text gets <blink> attribute.
Bold Text gets attribute.
bottom, top, middle Cell gets “valign=value” attribute to control vertical

justification. The default is “top”.
center, left, right Cell gets “align=value” attribute to control horizontal

justification.
color=#rgb,
color=color

Text gets attribute. The color can be
expressed as a #rrggbb hexadecimal value or as a color
name supported by the target browser, such as red, blue,
white, etc.

font=font Text gets attribute. Several modern
browsers support this, though the font typeface selected
may not be available on all clients.

hdr=html text The top of the column gets the html text, followed by a line
break
 tag. Use this option to replace top of page
column headers with “in cell” column headers.

hdron=hdron text
hdroff=hdroff text
hdrtd=hdrtd text

The column header, if defined, is placed in a cell with <td>
attributes specified hdrtd text, and text attributes hdron text
and hdroff text. Be sure to turn off any hdron text HTML
tags in hdroff text.

italic Text gets <i> attribute.
image Text is assumed to be file names that are image files. The

ufparam.txc|t file values for imagelib and imageurl are used
for image processing. The imagelib value is used to locate
files on the web server’s file system in order to calculate
width and height values (.gif and .jpg files only.) The
imageurl value is prefixed to the report data when
constructing the .

ltrim, rtrim, trim These three mutually exclusive options will cause UnForm
to left, right, or left and right trim the text of the column
when generating the HTML cell text. By default, any
spaces in the data for the cell remain in the output. Use of
this option may save some disk storage space and
document tranmission time.

noencode If this option is present, then the text is not encoded for
HTML markup entities. This should only be used if you
know that the text contains valid HTML coding.

UnForm Version 5

177

Option How it gets applied
otheropt=options The table cell gets additional attributes not otherwise

specified by the other options.
size=n Text gets attribute. Size ranges from 1 to 7,

with 3 being considered a “normal” size.
suppress If this word is present, then column data will be set to null.
underline Text gets <u> attribute.

Code blocks are optional definitions associated with any given column definition. With a code block, it
is possible to manipulate the text of each row in the column. A typical use of this capability might be to
convert the plain text to hyperlinks, so that a column of part numbers could be linked to pages in a
catalog, for example. Code blocks begin just after the opening brace “{“, can extend as many lines as
required, and end with a closing brace “}”.

The code block is executed for each row of the column. As the code starts, the following variables can
be used:

Variable Description
attr.align$
attr.bgcolor$
attr.blink
attr.bold
attr.color$
attr.font$
attr.italic
attr.otheropt$
attr.size$
attr.underline
attr.valign$

The attr$ variable is a string template that defines the
attributes to apply to the text or cell. These values match
those defined above in the options. Numeric values can be
set to 0 (false) or 1 (true). String values can be set to any
valid value for that attribute.

colofs The column offset from the left edge of the text. If the
column region is from column 21 through 40, then colofs
will be 21. This should be treated as a read-only value.

cols The number of columns in the region. Read only.
row The row number within the current region, from 1 through

the last row in the region. With each execution of the
subroutine, the row will increment by 1. Read only.

row$ The text of the current row within the region. This can be
manipulated by the code.

rowofs The position of the current row, relative to the whole page.
If you need to refer to data in some other column of the
current row, use rowofs. Read only.

UnForm Version 5

178

Functions available for your use, in addition to any intrinsic Business Basic functions, include:

Function Description
get(col,row,cols) Returns text from the page, given the column, row, and cols

parameters.
htmencode(text$) Returns text$ after converting HTML entities into

displayable versions.
set(col,row,cols,text
$)

Sets text$ into the page at the given column, row, and
columns.

urlencode(text$) Returns text$ after URL encoding to make it suitable for
inclusion in a hyperlink.

UnForm Version 5

179

COLWIDTH

Syntax

colwidth=text

Description

When UnForm generates a table for each page of a document, it defines a standard column cell width so
that text that lines up vertically in the report will remain lined up in the HTML version. UnForm
generates an initial single row of individual cells, using text as the cell width, as used in the HTML tag
”<td width=text>“.

If a text value, such as a pixel count or other valid HTML cell width is specified, then UnForm will use
that value when defining the initial column cell sizes for each page.

UnForm Version 5

180

FRAME

Syntax

frame=y | yes | n | no

Description

The frame keyword can be used in conjunction with the multipage keyword to control the presentation
of the report. Without these options, UnForm will produce a single file (named with the output
keyword or –o command line option, or to stdout), containing a HTML table for each page of output
from the source file. With the multipage keyword, UnForm will produce unique files for each page of
output, plus a table of contents page (whose format is controlled by the toc keyword). If frame is set to y
or yes, then an additional frame file is created for the browser to view the table of contents constantly
while viewing the report pages.

The output filename generated is for the frame file if frame is set to “y” or “yes”, and the table of
contents file if frame is not present, or is set to any other value.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 5

181

HDRON, HDROFF, HDRTD

Syntax

hdron=value
hdroff=value
hdrtd=value

Description

When a coldef hdr=text option is present, UnForm will add text to the top of the column, in a separate
cell. In order to make column-heading stand out, it may be desirable to give it attributes that are distinct
from the column text. These keywords define HTML text attributes to add before and after any column
header. hdrtd applies <td value> to the cell tag, while hdron and hdroff apply to the heading text.
Values for individual row groups can be specified in the rowdef or coldef keywords.

For example, hdron=<small> and hdroff=</small> would make column headings small and
bold.

Be sure to close any tags in the hdron value with corresponding tags in the hdroff variable.

UnForm Version 5

182

LOAD

Syntax

load filename

Description

The load keyword is used to load a secondary text file into the rule file at parsing time, at the position of
the load keyword. This provides the ability to maintain separate text files for the definitions, grouped in
any manner desired. For example, a common set of options for all reports could be defined in a second
file, and each report could reference that file.

UnForm will try to open the file first as named, then in the UnForm directory if it is not found. Note the
prefix setting, if present, in UnForm's config.unf file can be used to affect file searching.

Example

[Report1]
load "stdoptions.txt"

UnForm Version 5

183

MULTIPAGE

Syntax

multipage=y | yes

Description

If multipage is set to “y” or “yes”, UnForm will generate a different document file for each page of
output. The pages will be named filename.pagenum.htm, with pagenum being the sequential page
number of the report.

A table of contents will automatically be generated as well, with each link in the table of contents
referencing the proper document name. The table of contents file will be named one of two names:
filename.toc.htm if a frame structure is being generated, or filename.htm if not. When no frame is
generated, then the table of contents document becomes the base document for the output.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 5

184

NULLROW

Syntax

nullrow=y | yes

Description

If this value is set to “y” or “yes”, UnForm will print undefined row sets as mono-spaced text, using
HTML <pre> and </pre> tags. By default, UnForm will suppress any rows that have not been allocated
with rowdef keywords.

UnForm Version 5

185

OUTPUT

Syntax

output “filename”

Description

If no “-o filename” is specified on the command line, UnForm will use the file filename specified here.
Use this keyword to specify a default output location for any given report.

UnForm automatically adds a “.htm” extension to filename.

UnForm Version 5

186

OTHEROPT

Syntax

otheropt “table-options”

Description

When UnForm generates a table for each page of the document, it establishes border and width options
for the table tag: <table border=border width=width>. If additional options are desired, specify them
with this keyword. If present, the table tag is generated like this:

<table border=border width=width table-options>

See also the border and width keywords.

UnForm Version 5

187

PAGESEP

Syntax

pagesep “html code”

Description

If a single document is generated for all pages of output (multipage is not set to “y” or “yes”), then
UnForm will place a paragraph tag (<p>) between each page. If something other than a paragraph tag is
desired, then specify the HTML code in the pagesep keyword.

The pagesep value can contain global string values generated from code blocks by referencing the string
value name inside square brackets.

For example: pagesep “<p><hr>[pagehdr]” would generate a paragraph tag plus a horizontal rule,
followed by the value in the global string “pagehdr”, defined with the STBL() function in a prepage{} or
prejob{} code block.

UnForm Version 5

188

PREJOB, PREPAGE, POSTJOB, POSTPAGE

Syntax

prejob | postjob | prepage | postpage {
code block
}

Note: the opening brace “{“ needs to be on the same line as the keyword. The closing brace may
follow the last statement, or be on the line below the last statement.

Description

These keywords are used to add Business Basic processing code to the document generation process.
They represent four different subroutines that UnForm executes at specific points during processing.
The code block can be an arbitrary number of Business Basic statements; the total number of statements
in all code blocks can be about 6,000 (or less, depending on program size limits imposed by the run-time
environment).

• prejob executes after the ruleset has been read, and after the first page is read, but before any

printing takes place. Use this code to open files or databases, prepare SQL statements or string
templates, create user-defined functions, and initialize job variables.

• postjob executes after the last page has been printed. Use this to close out your logic, such as adding
totals to log reports. There is no need to close files, since UnForm will RELEASE Business Basic.

• prepage executes after each page is read, but before any printing takes place. Use this to gather data
associated with any page, or to modify the content of the text if you need such modifications to apply
to all copies.

• postpage executes after the last copy of each page has printed.

Any valid Business Basic programming code can be entered, including I/O logic, loops, variable
assignments, and more. Program to your heart’s content. UnForm will add extensive error handling
code within your code, and report syntax errors to the error log file or a trailer page. The code is inserted
into the module ufmain.pn at run-time, and BBXPROGRESSION/4 run-time environments are limited to
64K program sizes, so the amount of code added needs to be limited to 64K less the base size of
ufmain.pn if you are running UnForm under a BBXPROGRESSION/4 run-time.

You may use the following variables and functions in your code block:

• text$[all] is a one-dimensional array of the text for the page. For example, text$[2] is the second

line of the page.

UnForm Version 5

189

• mid(arg1$,arg2,arg3) (or fnmid$(arg1$,arg2,arg3)) is a function that safely returns a substring
without generating an error 47 if the value in arg1$ isn’t long enough to accommodate position arg2
and length arg3.

• get(col,row,length) (or fnget$(col,row,length)) is a function that safely returns text from the
text$[all] array, without substring or array out-of-bounds errors.

• set(col,row,length,value$) (or fnset$(col,row,length,value$)) is a function that places value$ in the
text$[all] array at the place indicated. It returns value$.

• err=next may be used for any err=label option in any function or statement, in order to force
UnForm’s error trapping to ignore an error. You may, of course, name your own err=label if desired.

When using variables and line labels, you should avoid using any values that begin with “UF_”. UnForm
reserves all such variables and labels for its own use. You may use a backslash (\) at the end of a line to
continue the statement on the next line. Lines prefixed with “#” are not added to the code.

A discussion of programming in Business Basic is outside of the scope of this manual. If your needs
require programming, then it would be advisable to hire a professional Business Basic programmer,
acquire training for a technical member of your staff, or contract with SDSI for your needs.

Column definitions can also have code blocks, which are executed as each row of a column definition is
generated. See the coldef keyword for more information.

UnForm Version 5

190

ROWDEF

Syntax

1. [rowdef | crowdef] row, rows, options

{ codeblock }

2. rowdef “text | ~regexpr”, rowoffset, rows, options
{ codeblock }

3. rowdef “text | ~regexpr”, rowoffset, “to-text | ~to-regexpr”, to-rowoffset options
{ codeblock }

Format 1 defines an absolute row region. rowdef 5,3 for example, would define a row region starting
with row 5, and extending 3 rows down (5-7). If the “crowdef” format is used, then row is the starting
row, and rows is the ending row. crowdef 5,7 would define the same region as rowdef 5,3.

Format 2 defines a region based on a search for a starting row that contains the text or matches the
regular expression. For each text value or regexpr found, the region will begin at the row rowoffset from
the point found, and extend for rows rows. For example, rowdef “Customer total”,0,1 will create a
region from each row containing “Customer total” (0 offset is that row), and extending for 1 row (just
that row).

Format 3 defines the region based on two searches, one to find the first row, one to find the ending row
below the starting row. In both cases, the row used for the region is adjusted for the offset. rowdef
“Customer:”,1,”Customer:”,-1 would define a region between each occurrence of the text
“Customer:”. If just the first string is found, then all rows from there to the last are specified. If just the
last string is found, then all rows from the first through there are specified. For this reason, be sure that
any absolute regions are specified first.

Under format 3, if the last string is not found, UnForm will continue that row definition on the page
following the first unallocated row at the time this row definition is evaluated on that page.

Description

Row definitions are used to define sets of rows for which a given group of column definitions would
apply. Each row definition defines a group of rows that will be presented within a single table row (<tr>
... </tr>). Under any given row definition, place the column definitions (coldef keywords) that will be
used to format the rows.

For example, an A/R Aging Report might contain a report heading, column headings, one or more
customer headings, and under each customer heading, one or more detail lines. At the end of the detail
lines would be customer totals. This report would have five row definitions, for each type of row:
report heading, column heading, customer headings, detail lines, and totals. Each of these types of rows

UnForm Version 5

191

will have its own set of column groups (or in some cases, no column groups at all, allowing simple
mono-spaced presentation.)

There can be up to 255 row definitions within any rule set.

Each row definition can define attributes that will become defaults for the text and cell formatting of all
the column definitions. Additionally, row definitions can define an option called “suppress”, which
causes UnForm to suppress the display of the row region. A comma separates each option.

Option How it gets applied
bgcolor=#rgb,
bgcolor=color

Cell gets a bgcolor=value attribute to control the
background color. The color can be expressed as a #rrggbb
hexadecimal value or as a color name supported by the
target browser, such as red, blue, white, etc.

blink Text gets <blink> attribute.
bold Text gets attribute.
bottom, top, middle Cell gets “valign=value” attribute to control vertical

justification. The default is “top”.
center, left, right Cell gets “align=value” attribute to control horizontal

justification.
color=#rgb,
color=color

Text gets attribute. The color can be
expressed as a #rrggbb hexadecimal value or as a color
name supported by the target browser, such as red, blue,
white, etc.

font=font Text gets attribute. This is supported by
several modern browsers, though the font typeface selected
may not be available on all browser clients.

hdr=html text The top of the column gets the html text, followed by a line
break
 tag. Use this option to replace top of page
column headers with “in cell” column headers.

hdron=hdron text
hdroff=hdroff text
hdrtd=hdrtd text

The column header, if defined, is placed in a cell with <td>
attributes specified hdrtd text, and text attributes hdron text
and hdroff text. Be sure to turn off any hdron text HTML
tags in hdroff text.

italic Text gets <i> attribute.
noencode If this option is present, then the text is not encoded for

HTML markup entities. This should only be used if you
know that the text contains valid HTML coding.

otheropt=options The table cell gets additional attributes not otherwise
specified by the other options.

size=n Text gets attribute. Sizes range from 1 to 7,
with 3 being considered a “normal” size.

suppress The rows are not displayed.
tr Each row in the row group gets a <tr> tag, ensuring that

UnForm Version 5

192

Option How it gets applied
column definitions, even if they contain data values of
varying height, will remain horizontally contiguous. If the
cells contain only text, this is generally not required, but if
some cells contain images, this keyword will likely be
required.

underline Text gets <u> attribute.

UnForm Version 5

193

TITLE

Syntax

title “title text”

Description

The title for any report can be defined in the rule set with this keyword. Once defined, anywhere in
HTML output templates that the tag “[$title]” is placed, this text will be substituted.

UnForm Version 5

194

TOC

Syntax

toc=y | yes | li | list | sh | short

Description

If this keyword is set to “y” or “yes”, UnForm will generate a simple table of contents by constructing
hyperlinks to each page generated. The hyperlinks are placed either at the top of the document, in a
separate, main document, or in a document referred to as the table of contents in a frame.

The following templates use a table of contents. Templates refer to files in the UnForm directory, and
are referenced in the parameter file under the “[html]” section: “both=” and “toc=”. In each case, the
placement of the table of contents is based on the placement of the tag “[$toc]” within the template file.

The text displayed for each hyperlink is generated from the “pagenum=” item of the “[html]” section of
the parameter file (ufparam.txc or ufparam.txt.) This text can also be generated by Business Basic code
in the prepage{} or postpage{} code blocks, by setting the string variable “toc$” to the value desired.

If the keyword is set to “li” or “list”, then the hyperlinks are created within a HTML unordered list (
...), and will normally be displayed as a bullet list.

If the keyword is set to “s”, “sh”, or “short”, then the table of contents links consist of just the pagenum
descriptor followed by each page number, with no line breaks or bullets. In this case, any code that sets
the value of toc$ is ignored.

This keyword is ignored if there is no filename specified for the output.

UnForm Version 5

195

WIDTH

Syntax

width=value

Description

The tables generated by UnForm for each page will normally occupy the entire width of the page, and
will therefore set the table width to 100%: <table width=100% ...>. If you would prefer a different width
setting, define it with this keyword. Be sure that if the value is a percentage of the screen, it has a
trailing “%”.

See also the otheropt and border keywords.

UnForm Version 5

196

SAMPLE HTML RULE SET

Below are sample rule sets defined by in the sample rule file, samphtml.rul. The sample text input files
used by UnForm for the PCL output examples are redefined here for HTML. Comments are interspersed
in the rule sets to help clarify what keywords perform what tasks.

AGING REPORT SAMPLE

To produce this aging report sample to a file, execute the following command:

unform -i sample3.txt -o aging -p html

You can substitute a different path/file name for “aging” to produce the HTML file elsewhere, such as in
the HTML document tree of your Web server.

The form is called “aging” to distinguish if from other rule sets. If the “-r aging” option is used on the
command line, then this set will be used.

[aging]

A detect statement identifies a report as the one defined by this rule set. If no “-r ruleset” option is used
on the command line, then this detect statement will be evaluated. If the text “Detail Aging” appears in
any column on row 2, this rule set is used.

detect 0,2,"Detail Aging"

The HTML output will produce 132 columns and 66 rows per page.

cols 132
rows 66

Any text consisting of 3 or more dashes will be erased. This removes all the dashed underlines at
customer totals. There are other ways to accomplish this, including defining a row set and using the
suppress option, or using a prepage{} code block to erase such text from the text$[] array.

hline "---"

The title used in HTML output for this report will be “Aging Report”.

title "Aging Report"

UnForm Version 5

197

If this line were not commented out (with the #), then anytime this rule set was used and no “-o
filename” was present on the command line, the output would go to “/tmp/aging.htm.”

#output "/tmp/aging"

This report will be generated in multiple files (one per page), with a table of contents page, and with a
HTML frame construct.

multipage=y
toc=y
frame=y

Between each page will be a HTML <p> tag (a paragraph separator). Any HTML text could be
supplied, including references to global strings inside square brackets ([variablename]). The
hdron/hdroff keywords supply HTML codes to place before and after any column definition headings,
defined with the hdr=text option in the coldef and rowdef keywords.

pagesep <p>
hdron=<i>
hdroff=</i>

This rowdef keyword defines a row set from row one for five rows. All column definitions within this
row will default to a background color RGB hex value of FFE0E0 (lots of red, high green and blue
content).

rowdef 1,5,bgcolor=#ffe0e0

For the above row set, there are three column sets: 1 through 10, 11 through 110, and 111 through 132.
The columns are left, center, and right justified, respectively. Otherwise, except for the background
color, the browser will use its default values for displaying the data.

coldef 1,10,left
coldef 11,100,center
coldef 111,22,right

This row definition causes UnForm to suppress display of rows 6, 7, and 8 (the column heading
information.) The rule set will define the column headers as necessary in other row sets.

rowdef 6,3,suppress

Each customer has a heading line, distinguished by the occurrence of a phone number in those rows.
The initial quoted value “~\(...-...-....\)” instructs UnForm to search for a regular expression match that
looks like a U.S. phone number in parentheses. From any and all such rows, start at 0 rows up or down,
and continue for 1 row. This defines those and only those rows that contain the phone numbers.
Columns defined for those rows will be bold, with blue text on a white background. As no columns are
defined under this row definition, UnForm allocates one column set the full 132 columns wide, and
applies the row defaults to the text.

UnForm Version 5

198

Customer header
rowdef "~\(...-...-....\)",0,1,bold,color #0000ff,bgcolor #ffffff

The invoice detail lines represent the most complicated of the row definitions, as there are numerous
columns with two different formats. We define constants for the two formats (left and right justification
being the only difference.) Then the rows are defined as any rows that contain a date structure of 2
characters, a slash, 2 characters, a slash, and 2 more characters. Note that even though some heading
rows have this structure, those rows have already been allocated by prior row definitions and won’t
confuse things here. UnForm searches for any row with a date. Then starting from that row (row offset
of 0), it searches for a row that contains 5 dashes. If such a row is found, then the row set goes through
the row before (row offset -1) the dashes. If no such row is found, then the row set goes through the last
row on the page.

Invoice lines
const LEFT="bgcolor=#e8e8e8,color=black”
const RIGHT="bgcolor=#e8e8e8,color=black,right”
rowdef "~../../..",0,"-----",-1

Each invoice line is made up of 13 columns of information. Each has been defined with the ccoldef
keyword with starting and ending column values. Additionally, each is given a header value that will
appear at the top of the column, and a constant that references other attributes defined earlier in the
rule set.

ccoldef 1,10,hdr="Invoice",LEFT
ccoldef 11,20,hdr="Due Date",LEFT
ccoldef 21,31,hdr="PO Number",LEFT
ccoldef 32,39,hdr="Ord Number",LEFT
ccoldef 40,45,hdr="Terms",LEFT
ccoldef 46,52,hdr="Type",LEFT
ccoldef 53,64,hdr="Future",RIGHT
ccoldef 65,75,hdr="Current",RIGHT
ccoldef 76,86,hdr="30 Days",RIGHT
ccoldef 87,97,hdr="60 Days",RIGHT
ccoldef 98,108,hdr="90 Days",RIGHT,color=red
ccoldef 109,119,hdr="120 Days",color=red,RIGHT
ccoldef 120,132,hdr="Balance",right,bold,RIGHT

The customer totals occur just below the row of dashes at the end of each customer’s invoices. This row
definition therefore searches for any rows containing 5 dashes, then starts 1 row down, and continues
for just 1 row.

Customer totals
rowdef "-----",1,1

The first 52 columns make up one column set. The report provides no text, so we include a code block
for this column that sets row$ to “Customer Totals:”. Note that if this row set contained more than a

UnForm Version 5

199

single row, we could say “if row=1 then row$=“Customer Totals:”. The remaining column sets just
apply right justification to the column values.

ccoldef 1,52,right
{row$="Customer Totals:"}
ccoldef 53,64,right
ccoldef 65,75,right
ccoldef 76,86,right
ccoldef 87,97,right
ccoldef 98,108,right
ccoldef 109,119,right
ccoldef 120,132,bold,right

UnForm Version 5

200

INDEX
Acrobat ... 35, 43, 78
across .. 42, 93
Activation ... 32
Adobe Acrobat.. 35
alias

Unix ... 15
align .. 176, 191
attachments ... 43, 59
attr$ variable ... 177
Attributes

bold, italic, light, underline 52
barcode ... 44, 47
BBx applications... 15
bgcolor .. 176, 191
bin ... 50, 97
blink .. 176, 191
bold ... 52, 68, 176, 191
bookmarks... 91, 144
border...See
box .. 53
Business Basic code.. 96, 188
cgtimes.. 70, 107
check printing ... 87
coldef .. 175
color .. 53, 77
color (RTL) images... 33
cols.. 56, 97
colwidth .. 179
config.unf.. 17
constant values.. 58
copies .. 32, 43, 59, 97
copy .. 97
Courier .. 70, 107
cpi ... 60
Cross hair pattern .. 38
crosshair.. 61, 97
detect... 62
Device support .. 6
dots per inch.. 64
double lined boxes .. 53
down ... 63, 93
dpi ... 64, 85, 113
dump ... 77
duplex ... 66, 67, 97
email ... 67, 157
encode... 176
end if ... 75, 76
environment variables ... 106
err=next ... 98, 189
error codes .. 155
Examples... 119

exec function... 98
fitting paragraphs .. 107
fixed.. 107
fixed font... 69
font.. 23, 70, 107, 176, 191
fontname ... 70, 107
frame... 170, 180
get(col,row,length).. 98, 189
graphical shading .. 33, 73
grid lines ... 54
hdr... 176, 181
hdroff .. 176, 181, 191
hdron... 176, 181, 191
hdrtd.. 176, 181, 191
hline .. 74
HTML output.. 35
HTML rule sets... 173
HTML template files .. 170
if copy... 75, 76
image .. 176
images... 16, 21, 77
Input file ... 34
Installation

Unix ... 7
Windows .. 9

international character sets.. 105
italic .. 52, 176
labels... 93
landscape .. 34, 80, 97
light... 52
line drawing .. 53
line labels.. 99, 189
load... 182
lpi 82
macro .. 83
macros... 84, 116
MailCall .. 157
mailing labels.. 93
margin... 97
margins ... 85
merge .. 86
mget(col,row,cols,rows,lf$,trim$)................................. 98
micr... 87
mid(arg1$,arg2,arg3)... 98, 189
move ... 88
MS-DOS ... 6
multipage .. 180, 183
multi-up printing ... 42, 63
noencode... 176
notext .. 90
Novell ... 17

UnForm Version 5

201

nullrow.. 184
orientation... 97
Orientation

landscape.. 80
portrait.. 95

outlines.. 91, 144
output .. 34, 92, 185
output$.. 97
page... 93
Page dimensions

cols ... 56
cpi .. 60
lpi 82
margins... 85
rows.. 101

page size ... 94
pagesep ... 187
paper size .. 94, 97
Paper size.. 36
PCL5... 6
pcopies .. 59
pdf files ... 35
PDF outlines ... 91, 144
percent gray .. 71, 102, 107
pictures.. 77
point size ... 71, 107
portrait .. 95, 97
post processing.. 16, 21
postcopy.. 96
postjob .. 96, 188
postpage .. 96, 188
precopy ... 96, 188
prejob.. 96, 188
prepage.. 96, 188
programming .. 96, 106, 188
proportional .. 107
ProvideX applications... 19
regular expression ... 118
reverse landscape .. 36, 80
reverse portrait .. 36, 95
rowdef ... 190
rows .. 97, 101
rule file.. 33, 41
rule set... 36, 41
sample HTML rule set .. 196
samples ... 119
set(col,row,length,value$) 98, 189
shade ... 102
shading...33. See
shift ... 37, 104
skip.. 97
substitution file ... 106

Substitution file... 37
Supported devices... 6
suppress .. 191
symbol set ... 23, 70, 107
symset ... 105
table of contents.. 170, 194
text .. 106

movement... 104, 115
suppressing... 90

Text analyzer .. 62
text expressions... 106
text$[all] ... 97, 188
tips and techniques.. 10
Tips and Techniques... 12
title.. 193
toc ... 180, 194
tray.. 97, 111
trim ... 176
ufclient.exe ... 29
ufparam.txt.. 23, 70, 107
underline ... 52, 177, 192
UnForm

about .. 6
command line options .. 32
cross hair pattern.. 38
in BBX or PRO/5.. 15
in ProvideX.. 19
MS-DOS .. 6
programming.. 96, 188
text analyzer ... 62
Unix ... 6
Windows .. 6

UnForm Windows Server ... 29
units .. 113
univers .. 70, 107
Unix .. 6
user counts .. 31
valign .. 176, 191
variables.. 99, 189
Visual PRO/5.. 17
vline .. 114
vshift ... 37, 115
width ... 195
wildcards .. 118
Windows... 6
Windows printers.. 30
Windows printing ... 35
Windows Server.. 29
word wrapping .. 107
Zebra label printers... 35, 47
ZPL II ... 35

	TABLE OF CONTENTS
	TABLE OF CONTENTS	3
	INSTALLATION
	CONCEPTS, PRIMER, AND TIPS
	INTEGRATING UNFORM WITH BBX4 OR PRO/5
	INTEGRATING UNFORM WITH PROVIDEX
	INTEGRATING UNFORM WITH NON-BUSINESS BASIC APPLICATIONS
	FILES USED BY UNFORM
	LICENSING
	UNFORM ON A WINDOWS NETWORK
	USER COUNTS
	UNFORM OPTIONS
	VERSION 5 FEATURES
	RULE FILES
	ACROSS
	ATTACH
	BARCODE (PCL,PDF)
	BARCODE (ZEBRA)
	BIN
	BOJ, BOP, EOJ, EOP
	BOLD, ITALIC, LIGHT, UNDERLINE
	CBOLD, CITALIC, CLIGHT, CUNDERLINE
	BOX, CBOX
	COLS
	COMPRESS
	CONST
	COPIES / PCOPIES
	CPI
	CROSSHAIR
	DETECT
	DOWN
	DPI
	DUMP
	DUPLEX
	EMAIL
	ERASE, CERASE
	FIXEDFONT
	FONT, CFONT
	GS
	HLINE
	IF COPY … END IF
	IF DRIVER … END IF
	IMAGE
	ITALIC
	LANDSCAPE, RLANDSCAPE
	LIGHT
	LPI
	MACRO
	MACROS
	MARGIN
	MERGE
	MICR
	MOVE, CMOVE
	NOTEXT
	OUTLINE
	OUTPUT
	PAGE
	PAPER
	PORTRAIT, RPORTRAIT
	PRECOPY, PREDEVICE, PREJOB, PREPAGE
	POSTCOPY, POSTDEVICE, POSTJOB, POSTPAGE
	ROWS
	SHADE, CSHADE
	SHIFT
	SYMSET
	TEXT
	TITLE
	TRAY
	UNDERLINE
	UNITS
	VLINE
	VSHIFT

	WORKING WITH MACROS
	REGULAR EXPRESSIONS
	SAMPLE RULE SETS
	INVOICE - INVOICE FOR PRE-PRINTED FORM
	STATEMENT - PLAIN PAPER FORM, TWO PAGE FORMATS IN SAME JOB
	AGING REPORT - ENHANCED AGING REPORT
	LABELS – TEXT LABELS TO LASER LABELS
	132X4 – MULTI-UP, SCALED REPORTING
	ZEBRA LABEL – ZEBRA(LABEL PRINTER EXAMPLE
	PDF OUTLINE SAMPLE

	PROGRAMMING FUNDAMENTALS
	EMAIL INTEGRATION
	NESTED RULESET EXECUTION
	HTML OUTPUT
	CREATING HTML
	HTML CONFIGURATION
	HTML OUTPUT TEMPLATES
	HTML RULE SETS
	BORDER
	COLDEF
	COLWIDTH
	FRAME
	HDRON, HDROFF, HDRTD
	LOAD
	MULTIPAGE
	NULLROW
	OUTPUT
	OTHEROPT
	PAGESEP
	PREJOB, PREPAGE, POSTJOB, POSTPAGE
	ROWDEF
	TITLE
	TOC
	WIDTH
	SAMPLE HTML RULE SET
	AGING REPORT SAMPLE

	INDEX

